1
|
Bektas H, Dasdag S. The effects of radiofrequency radiation on male reproductive health and potential mechanisms. Electromagn Biol Med 2025:1-26. [PMID: 40108785 DOI: 10.1080/15368378.2025.2480664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Recent studies have demonstrated that radiofrequency (RF) radiation emanating from devices such as mobile phones and Wi-Fi may have adverse effects on male reproductive health. This radiation can elevate testicular temperature, potentially compromising sperm quality and DNA integrity, and influence the specific absorption rate (SAR) across different body regions, leading to detrimental reproductive outcomes. Furthermore, exposure to RF radiation has been linked to conditions that could affect male reproductive function, such as oxidative stress, alterations in ion transitions across cell membranes, and inflammation. The article reviews research conducted on both humans and animal models regarding the effects of electromagnetic radiation on sperm quality, DNA damage, oxidative stress, hormone levels, and testicular function, suggesting that exposure to electromagnetic radiation could have harmful implications for male reproductive health. However, further research is necessary to fully understand the mechanisms and implications of non-ionizing electromagnetic radiation on male infertility.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
2
|
Jamaludin N, Ibrahim SF, Jaffar FHF, Zulkefli AF, Osman K. The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury. Antioxidants (Basel) 2025; 14:179. [PMID: 40002366 PMCID: PMC11852241 DOI: 10.3390/antiox14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Concerns have arisen about the impact of wireless technology on male fertility, particularly regarding the duration of 2.45 GHz Wi-Fi radiation exposure. This study examines the influence of various exposure durations on sperm parameters and testicular histopathology, focusing on malondialdehyde as an oxidative stress marker. Twenty-four Sprague Dawley rats were exposed for eight weeks, after which their sperm concentration, motility, and viability and testicular histopathology were assessed. Malondialdehyde levels were measured using an Enzyme-Linked Immunosorbent Assay. One-way ANOVAs with Tukey's post hoc tests were conducted for the sperm concentration, motility, and viability; the seminiferous epithelium height; and malondialdehyde. The Kruskal-Wallis H test was used for the Johnsen Score and seminiferous tubule diameter. The results indicated that 4 h of exposure to 2.45 GHz radiation induced oxidative stress and adversely affected sperm parameters and the testicular ultrastructure. Gradual recovery was observed at 8 h, with further improvement at 24 h, suggesting the activation of cell repair mechanisms. This was supported by significant changes in testicular organ coefficients, indicating potential recovery. Our findings suggest that Wi-Fi exposure reduces sperm fertility potential, with the body showing limited capacity for complete recovery from the damage.
Collapse
Affiliation(s)
- Norazurashima Jamaludin
- Centre of Diagnostic, Therapeutic and Investigation Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Department of Anatomy & Physiology, Institut Latihan Kementerian Kesihatan Malaysia (ILKKM), Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (A.F.Z.)
| | - Farah Hanan Fathihah Jaffar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (A.F.Z.)
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (A.F.Z.)
| | - Khairul Osman
- Centre of Diagnostic, Therapeutic and Investigation Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
3
|
Cordelli E, Ardoino L, Benassi B, Consales C, Eleuteri P, Marino C, Sciortino M, Villani P, H Brinkworth M, Chen G, P McNamee J, Wood AW, Belackova L, Verbeek J, Pacchierotti F. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. ENVIRONMENT INTERNATIONAL 2024; 185:108509. [PMID: 38492496 DOI: 10.1016/j.envint.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).
Collapse
Affiliation(s)
- Eugenia Cordelli
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Lucia Ardoino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Barbara Benassi
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Claudia Consales
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Carmela Marino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Paola Villani
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Martin H Brinkworth
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew W Wood
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia
| | - Lea Belackova
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Jos Verbeek
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Francesca Pacchierotti
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| |
Collapse
|
4
|
Maluin SM, Jaffar FHF, Osman K, Zulkefli AF, Mat Ros MF, Ibrahim SF. Exploring edible bird nest's potential in mitigating Wi-Fi's impact on male reproductive health. Reprod Med Biol 2024; 23:e12606. [PMID: 39263384 PMCID: PMC11387989 DOI: 10.1002/rmb2.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
Purpose This study aimed to evaluate the protective effects of edible bird nest (EBN) against the detrimental impact of Wi-Fi on male reproductive health. Specifically, it examines whether EBN can mitigate Wi-Fi-induced changes in male reproductive hormones, estrogen receptors (ER), spermatogenesis, and sperm parameters. Methods Thirty-six adult male rats were divided into six groups (n = 6): Control, Control EBN, Control E2, Wi-Fi, Wi-Fi+EBN, and Wi-Fi+E2. Control EBN and Wi-Fi+EBN groups received 250 mg/kg/day EBN, while Control E2 and Wi-Fi+E2 groups received 12 μg/kg/day E2 for 10 days. Wi-Fi exposure and EBN supplementation lasted eight weeks. Assessments included organ weight, hormone levels (FSH, LH, testosterone, and E2), ERα/ERβ mRNA and protein expression, spermatogenic markers (c-KIT and SCF), and sperm quality. Results Wi-Fi exposure led to decreased FSH, testosterone, ERα mRNA, and sperm quality (concentration, motility, and viability). EBN supplementation restored serum FSH and testosterone levels, increased serum LH levels, and the testosterone/E2 ratio, and normalized mRNA ERα expression. Additionally, EBN increased sperm concentration in Wi-Fi-exposed rats without affecting motility or viability. Conclusions EBN plays a crucial role in regulating male reproductive hormones and spermatogenesis, leading to improved sperm concentration. This could notably benefit men experiencing oligospermia due to excessive Wi-Fi exposure.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine and Health Sciences Universiti Sains Islam Malaysia (USIM) Nilai Malaysia
| | | | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences Universiti Kebangsaan Malaysia (UKM) Bangi Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| | - Mohd Farisyam Mat Ros
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| |
Collapse
|
5
|
Ersoy N, Acikgoz B, Aksu I, Kiray A, Bagriyanik HA, Kiray M. The Effects of Prenatal and Postnatal Exposure to 50-Hz and 3 mT Electromagnetic Field on Rat Testicular Development. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010071. [PMID: 36676695 PMCID: PMC9867318 DOI: 10.3390/medicina59010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Background and objectives: It has been shown that electromagnetic fields (EMFs) have negative effects on the reproductive system. The biological effects of EMF on the male reproductive system are controversial and vary depending on the frequency and exposure time. Although a limited number of studies have focused on the structural and functional effects of EMF, the effects of prenatal and postnatal EMF exposure on testes are not clear. We aimed to investigate the effects of 50-Hz, 3-mT EMF exposure (5 days/wk, 4 h/day) during pre- and postnatal periods on testis development. Materials and Methods: Pups from three groups of Sprague-Dawley pregnant rats were used: Sham, EMF-28 (EMF-exposure applied during pregnancy and until postnatal day 28), EMF-42 (EMF-exposure applied during pregnancy and until postnatal day 42). The testis tissues and blood samples of male offspring were collected on the postnatal day 42. Results: Morphometric analyses showed a decrease in seminiferous tubule diameter as a result of testicular degeneration in the EMF-42 group. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were decreased in the EMF-42 group. Lipid peroxidation levels were increased in both EMF groups, while antioxidant levels were decreased only in the EMF-28 group. We found decreased levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF1) in the EMF-42 group, and decreased levels of the SRC homology 3 (SH3) and multiple ankyrin repeat domain (SHANK3) in the EMF-28 group in the testis tissue. Conclusions: EMF exposure during pre- and postnatal periods may cause deterioration in the structure and function of testis and decrease in growing factors that would affect testicular functions in male rat pups. In addition to the oxidative stress observed in testis, decreased SHANK3, VEGF, and IGF1 protein levels suggests that these proteins may be mediators in testis affected by EMF exposure. This study shows that EMF exposure during embryonic development and adolescence can cause apoptosis and structural changes in the testis.
Collapse
Affiliation(s)
- Nevin Ersoy
- Department of Histology&Embryology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Health Sciences Institute, Dokuz Eylul University, 35330 Izmir, Turkey
- Izmir Biomedicine and Genom Center, 35330 Izmir, Turkey
| | - Burcu Acikgoz
- Health Sciences Institute, Dokuz Eylul University, 35330 Izmir, Turkey
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Ilkay Aksu
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Amac Kiray
- Department of Anatomy, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Husnu Alper Bagriyanik
- Department of Histology&Embryology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Izmir Biomedicine and Genom Center, 35330 Izmir, Turkey
| | - Muge Kiray
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Correspondence:
| |
Collapse
|
6
|
Gupta V, Srivastava R. 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun 2022; 629:61-70. [PMID: 36113179 DOI: 10.1016/j.bbrc.2022.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
Due to the growing number of gadgets emitting electromagnetic radiation (EMR), particularly microwave (MW) radiation, in our daily lives, it is believed that EMR have both long-term and short-term biological impacts that are quite concerning for avian as well as human health. Due to the negative impact of MW emitting equipment on the biological system this study looks into the mechanistic approach by which low-level of 2.45 GHz MW radiation causes an oxidative stress and inflammatory response in the testes micro-environment which further gets regulated by estrogen receptor alpha (ERα) expression in immature Gallus gallus domesticus leading to male infertility. Two weeks old immature male chickens were exposed to non-thermal low-level 2.45-GHz MW radiation for 2 h/day for 30 days (power density = 0.1264 mw/cm2 and SAR = 0.9978 W/kg). In the exposed group, morphometric examination of the testes revealed decreased testicular weight, volume and gonado-somatic index. Further, histological staining demonstrated a substantial reduction in the diameter of seminiferous tubules in the exposed group as compared to the control. The degree of oxidative stress was also determined showing an increase in oxidative stress parameters after exposure. The radiation exposed testes showed a significant increase in IL-1β immunoreactivity and decline in IL-10 immunoreactivity, indicating a sense of MW radiation-induced oxidative stress-regulated inflammatory response. A substantial reduction in ERα expression was also observed in exposed testes by Western blotting. Our investigations conclude that testes being vulnerable to free radical damage become an easy target organ for MW exposure induced oxidative and inflammatory stress. Therefore it becomes evident that it may cause male infertility in chicks via downregulation of ER-α in testis.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
7
|
Wi-Fi technology and human health impact: a brief review of current knowledge. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:94-106. [PMID: 35792772 PMCID: PMC9287836 DOI: 10.2478/aiht-2022-73-3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2022] [Indexed: 01/05/2023]
Abstract
An enormous increase in the application of wireless communication in recent decades has intensified research into consequent increase in human exposure to electromagnetic (EM) radiofrequency (RF) radiation fields and potential health effects, especially in school children and teenagers, and this paper gives a snap overview of current findings and recommendations of international expert bodies, with the emphasis on exposure from Wi-Fi technology indoor devices. Our analysis includes over 100 in vitro, animal, epidemiological, and exposure assessment studies (of which 37 in vivo and 30 covering Wi-Fi technologies). Only a small portion of published research papers refers to the “real” health impact of Wi-Fi technologies on children, because they are simply not available. Results from animal studies are rarely fully transferable to humans. As highly controlled laboratory exposure experiments do not reflect real physical interaction between RF radiation fields with biological tissue, dosimetry methods, protocols, and instrumentation need constant improvement. Several studies repeatedly confirmed thermal effect of RF field interaction with human tissue, but non-thermal effects remain dubious and unconfirmed.
Collapse
|
8
|
Abarikwu SO, Mgbudom-Okah CJ, Njoku RCC, Okonkwo CJ, Onuoha CC, Wokoma AFS. Gallic acid ameliorates busulfan-induced testicular toxicity and damage in mature rats. Drug Chem Toxicol 2022; 45:1881-1890. [PMID: 33730944 DOI: 10.1080/01480545.2021.1892949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Here, we studied the protective effect of gallic acid (GAL) as a potent anti-oxidant and anti-inflammatory agent against damage caused by busulfan (BUS) in the testes of adult rats. The adult Wistar rats were assigned as control, BUS: was intraperitoneally (i.p.) treated with busulfan (15 mg/kg, day 7 and 14), GAL + BUS: was co-treated with busulfan (i.p., 15 mg/kg, day 7 and 14) and orally treated (per os) with gallic acid (60 days, 20 mg/kg) and GAL: was treated with gallic acid (per os, 60 days, 20 mg/kg). The results showed that GAL co-treatment increased the numbers of spermatogonia (Type A and B), spermatocytes (primary and secondary) and round spermatids, along with the tubular diameter, epithelial height and gonado-somatic index. In addition, BUS-induced increase in 3β-hydroxysteroid dehydrogenase and γ-glutamyl transpeptidase activities were inhibited on GAL co-treatment. Similarly, BUS-induced decrease in gluthathione concentration, catalase and superoxide dismutase activities along with increase in myeloperoxidase activity and malondialdehyde concentration were significantly normalized to control values on GAL co-treatment. Busulfan-induced elimination of tubular germ cells was completely prevented by GAL. Overall, GAL may inhibit BUS-mediated spermatogenesis arrest via decreasing inflammatory-mediated oxidative stress in a rat experimental model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Chinedu J Okonkwo
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Adaba F S Wokoma
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
9
|
Biological Effects of Non-Ionizing Electromagnetic Fields at 27 GHz on Sperm Quality of Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, an increasing use of wireless internet technologies has been demonstrated. The devices which use these technologies emit in new spectral regions an electromagnetic radiation (EMF) which could interact with the male reproductive system. The aim of this study was to investigate in vitro the effect of electromagnetic fields at 27 GHz on sperm quality in Mytilus galloprovincialis. Sperm samples were collected from sexually mature males of M. galloprovincialis and placed in seawater. Once we evaluated the number and quality of spermatozoa, sperm cells were exposed to electromagnetic fields radiated by a pyramidal horn antenna. The effect of exposure was evaluated after 10, 20, 30, 40 and 60 min by a light microscope and using an Eosin test. Ten replications were performed for each time series, and statistical analysis was carried out by t-test. Sperm motility decreased after 10 min of exposure, and after 30 min most of the spermatozoa were immobile and not vital. This study provides useful data on the potential ecological impact of the high-band 5G on animal fertility, the effect of which is currently under investigation.
Collapse
|
10
|
Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF. Long-Term Wi-Fi Exposure From Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird’s Nest Supplementation. Front Physiol 2022; 13:828578. [PMID: 35360230 PMCID: PMC8963498 DOI: 10.3389/fphys.2022.828578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Children are vulnerable to the radiofrequency radiation (RFR) emitted by Wi-Fi devices. Nevertheless, the severity of the Wi-Fi effect on their reproductive development has been sparsely available. Therefore, this study was conducted to evaluate the Wi-Fi exposure on spermatogonia proliferation in the testis. This study also incorporated an approach to attenuate the effect of Wi-Fi by giving concurrent edible bird’s nest (EBN) supplementation. It was predicted that Wi-Fi exposure reduces spermatogonia proliferation while EBN supplementation protects against it. A total of 30 (N = 30) 3-week-old Sprague Dawley weanlings were divided equally into five groups; Control, Control EBN, Wi-Fi, Sham Wi-Fi, and Wi-Fi + EBN. 2.45 GHz Wi-Fi exposure and 250 mg/kg EBN supplementation were conducted for 14 weeks. Findings showed that the Wi-Fi group had decreased in spermatogonia mitosis status. However, the mRNA and protein expression of c-Kit-SCF showed no significant decrease. Instead, the reproductive hormone showed a reduction in FSH and LH serum levels. Of these, LH serum level was decreased significantly in the Wi-Fi group. Otherwise, supplementing the Wi-Fi + EBN group with 250 mg/kg EBN resulted in a significant increase in spermatogonia mitotic status. Even though EBN supplementation improved c-Kit-SCF mRNA and protein expression, the effects were insignificant. The improvement of spermatogonia mitosis appeared to be associated with a significant increase in blood FSH levels following EBN supplementation. In conclusion, the long-term Wi-Fi exposure from pre-pubertal to adult age reduces spermatogonia proliferation in the testis. On the other hand, EBN supplementation protects spermatogonia proliferation against Wi-Fi exposure.
Collapse
Affiliation(s)
| | - Khairul Osman
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
- *Correspondence: Siti Fatimah Ibrahim,
| |
Collapse
|
11
|
Maluin SM, Osman K, Jaffar FHF, Ibrahim SF. Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Front Physiol 2021; 12:732420. [PMID: 34630149 PMCID: PMC8497974 DOI: 10.3389/fphys.2021.732420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to radiofrequency electromagnetic radiation (RF-EMR) from various wireless devices has increased dramatically with the advancement of technology. One of the most vulnerable organs to the RF-EMR is the testes. This is due to the fact that testicular tissues are more susceptible to oxidative stress due to a high rate of cell division and mitochondrial oxygen consumption. As a result of extensive cell proliferation, replication errors occur, resulting in DNA fragmentation in the sperm. While high oxygen consumption increases the level of oxidative phosphorylation by-products (free radicals) in the mitochondria. Furthermore, due to its inability to effectively dissipate excess heat, testes are also susceptible to thermal effects from RF-EMR exposure. As a result, people are concerned about its impact on male reproductive function. The aim of this article was to conduct a review of literature on the effects of RF-EMR emitted by wireless devices on male reproductive hormones in experimental animals and humans. According to the findings of the studies, RF-EMR emitted by mobile phones and Wi-Fi devices can cause testosterone reduction. However, the effect on gonadotrophic hormones (follicle-stimulating hormone and luteinizing hormone) is inconclusive. These findings were influenced by several factors, which can influence energy absorption and the biological effect of RF-EMR. The effect of RF-EMR in the majority of animal and human studies appeared to be related to the duration of mobile phone use. Thus, limiting the use of wireless devices is recommended.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia (USIM), Nilai, Malaysia
| | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Bouyahya A, Guaouguaou FE, El Omari N, El Menyiy N, Balahbib A, El-Shazly M, Bakri Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J Pharm Anal 2021; 12:35-57. [PMID: 35573886 PMCID: PMC9073245 DOI: 10.1016/j.jpha.2021.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents. Anti-inflammatory and analgesic effects of Moroccan medicinal plants were highlighted. Chemical nature of Moroccan medicinal plants with anti-inflammatory and analgesic effects was reported. Insights into anti-inflammatory mechanisms of bioactive compounds were highlighted. Toxicological investigations of Moroccan medicinal plants were reviewed.
Collapse
|
13
|
Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction. Antioxidants (Basel) 2021; 10:antiox10060837. [PMID: 34073826 PMCID: PMC8225220 DOI: 10.3390/antiox10060837] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including “hypogonadism”, “late-onset hypogonadism”, “testosterone”, “erectile dysfunction”, “reactive oxygen species”, “oxidative stress”, and “environmental pollution” in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED.
Collapse
|
14
|
Almášiová V, Holovská K, Andrašková S, Cigánková V, Ševčíková Z, Raček A, Andrejčáková Z, Beňová K, Tóth Š, Tvrdá E, Molnár J, Račeková E. Potential influence of prenatal 2.45 GHz radiofrequency electromagnetic field exposure on Wistar albino rat testis. Histol Histopathol 2021; 36:685-696. [PMID: 33779980 DOI: 10.14670/hh-18-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ever-increasing use of wireless devices over the last decades has forced scientists to clarify their impact on living systems. Since prenatal development is highly sensitive to numerous noxious agents, including radiation, we focused on the assessment of potential adverse effects of microwave radiation (MR) on testicular development. Pregnant Wistar albino rats (3 months old, weighing 282±8 g) were exposed to pulsed MR at a frequency of 2.45 GHz, mean power density of 2.8 mW/cm², and a specific absorption rate of 1.82 W/kg for 2 hours/day throughout pregnancy. Male offspring were no longer exposed to MR following birth. Samples of biological material were collected after reaching adulthood (75 days). In utero MR exposure caused degenerative changes in the testicular parenchyma of adult rats. The shape of the seminiferous tubules was irregular, germ cells were degenerated and often desquamated. The diameters of the seminiferous tubules and the height of the germinal epithelium were significantly decreased (both at ∗∗p<0.01), while the interstitial space was significantly increased (∗∗p<0.01) when compared to the controls. In the group of rats prenatally exposed to MR, the somatic and germ cells were rich in vacuoles and their organelles were often altered. Necrotizing cells were more frequent and empty spaces between Sertoli cells and germ cells were observed. The Leydig cells contained more lipid droplets. An increased Fluoro Jade - C and superoxide dismutase 2 positivity was detected in the rats exposed to MR. Our results confirmed adverse effects of MR on testicular development.
Collapse
Affiliation(s)
- Viera Almášiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic.
| | - Katarína Holovská
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Sandra Andrašková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Viera Cigánková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Adam Raček
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Zuzana Andrejčáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Katarína Beňová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Štefan Tóth
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, the Slovak Republic
| | - Eva Tvrdá
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, the Slovak Republic
| | - Ján Molnár
- Department of Theoretical and Industrial Electrical Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Kosice, the Slovak Republic
| | - Enikö Račeková
- Institute of Neurobiology of Biomedical Research Center of Slovak Academy of Sciences, the Slovak Republic
| |
Collapse
|
15
|
Improvement of testosterone deficiency by fermented Momordica charantia extracts in aging male rats. Food Sci Biotechnol 2021; 30:443-454. [PMID: 33868755 DOI: 10.1007/s10068-020-00872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022] Open
Abstract
This study evaluated the efficacy of Momordica charantia (MC; bitter melon) extracts against andropause symptoms. We fermented MC with Lactobacillus plantarum and verified the ability of the fermented MC extracts (FMEs) to control testosterone deficiency by using aging male rats as an animal model of andropause. FME administration considerably increased total and free testosterone levels, muscle mass, forced swimming time, and total and motile sperm counts in aging male rats. In contrast, sex hormone-binding globulin, retroperitoneal fat, serum cholesterol, and triglyceride levels were significantly reduced in the treated groups compared to the non-treated control aging male rats. Furthermore, we observed that FME enhanced the expression of testosterone biosynthesis-related genes but reduced the expression of testosterone degradation-related genes in a mouse Leydig cell line. These results suggest that FME has effective pharmacological activities that increase and restore free testosterone levels and that FME may be employed as a promising natural product for alleviating testosterone deficiency syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-020-00872-x.
Collapse
|
16
|
Abstract
In critically examining literature on electrohypersensitivity and the reported somatic responses to anthropogenic modulated radiofrequency radiation (RFR) exposure, it becomes apparent that electrohypersensitivity is one part of a range of consequences. Current evidence on the necessity of considering patients' overall health status leads us to propose a new model in which electrohypersensitivity is but part of the electrosensitive status inherent in being human. We propose the likelihood and type of response to environmental RFR include i) a linear somatic awareness continuum, ii) a non-linear somatic response continuum, and iii) the extent of each individual's capacity to repair damage (linked to homeostatic response). We anticipate this last, dynamic, aspect is inextricably linked to the others through the autonomic nervous system. The whole is dependent upon the status of the interconnected immune and inflammatory systems. This holistic approach leads us to propose various outcomes. For most, their body maintains homeostasis by routine repair. However, some develop electrohypersensitivity either due to RFR exposure or as an ANS-mediated, unconscious response (aka nocebo effect), or both. We suggest RFR exposure may be one factor in the others developing an auto-immune disease or allergy. A few develop delayed catastrophic disease such as glioma. This model gives the blanket term ElectroMagnetic Illness (EMI) to all RFR-related conditions. Thus, EHS appears to be one part of a range of responses to a novel and rapidly changing evolutionary situation.
Collapse
Affiliation(s)
- Mary Redmayne
- SGEES, Victoria University of Wellington, New Zealand.,Monash University, Melbourne, Australia
| | | |
Collapse
|
17
|
Yadav H, Rai U, Singh R. Radiofrequency radiation: A possible threat to male fertility. Reprod Toxicol 2021; 100:90-100. [PMID: 33497741 DOI: 10.1016/j.reprotox.2021.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Radiofrequency exposure from man-made sources has increased drastically with the era of advanced technology. People could not escape from such RF radiations as they have become the essential part of our routine life such as Wi-Fi, microwave ovens, TV, mobile phones, etc. Although non-ionizing radiations are less damaging than ionizing radiations but its long term exposure effect cannot be avoided. For fertility to be affected, either there is an alteration in germ cell, or its nourishing environment, and RF affects both the parameters subsequently, leading to infertility. This review with the help of in vitro and in vivo studies shows that RF could change the morphology and physiology of germ cells with affected spermatogenesis, motility and reduced concentration of male gametes. RF also results in genetic and hormonal changes. In addition, the contribution of oxidative stress and protein kinase complex after RFR exposure is also summarized which could also be the possible mechanism for reduction in sperm parameters. Further, some preventative measures are described which could help in reverting the radiofrequency effects on germ cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Umesh Rai
- Deparment of Zoology, University of Delhi, Delhi, 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
18
|
Owumi SE, Adedara IA, Akomolafe AP, Farombi EO, Oyelere AK. Gallic acid enhances reproductive function by modulating oxido-inflammatory and apoptosis mediators in rats exposed to aflatoxin-B1. Exp Biol Med (Maywood) 2020; 245:1016-1028. [PMID: 32558593 DOI: 10.1177/1535370220936206] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT Infertility resulting from reproductive deficiency can be stressful. Exposure to aflatoxin B1, a dietary mycotoxin prevalent in improperly stored grains, is reported to elicit reproductive insufficiencies and infertility. We, therefore, examined the likely beneficial effect of gallic acid (GA) a phytochemical, recognized to exhibit in vitro and in vivo pharmacological bioactivities against oxidative stress and related inflammatory damages in rats, since AFB1 toxicities are predicated on oxidative epoxide formation, in a bid to proffer new evidence to advance the field of nutriceutical application from plant-derived chemopreventive agents. Our findings will advance the field of chemoprevention by presenting data absent in the literature on GA. Our results demonstrate further evidence for GA conferred protection against AFB1-mediated histological lesions in testes, epididymis, and hypothalamus of treated rats; suppresses oxidative damages, relieved inflammatory and apoptotic responses, restored sperm functional characteristics, and hormonal levels relevant for reproductive integrity and function.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Ayomide P Akomolafe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
19
|
Topsakal S, Ozmen O, Cicek E, Comlekci S. The ameliorative effect of gallic acid on pancreas lesions induced by 2.45 GHz electromagnetic radiation (Wi-Fi) in young rats. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Senay Topsakal
- Pamukale University, Faculty of Medicine, Department of Endocrinology and Metabolism, Denizli, Turkey
| | - Ozlem Ozmen
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Pathology, Burdur, Turkey
| | - Ekrem Cicek
- Zirve University, EBN Faculty of Medicine, Department of Pharmacology, Gaziantep, Turkey
| | - Selcuk Comlekci
- Suleyman Demirel University, Engineering Faculty, Department of Bioengineering, Isparta, Turkey
| |
Collapse
|
20
|
Kamali K, Taravati A, Sayyadi S, Gharib FZ, Maftoon H. Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35396-35403. [PMID: 30343375 DOI: 10.1007/s11356-018-3482-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Exposure to electromagnetic radiation (EMR) is rapidly increasing in everyday environment, consequently conferring potential health effects. Oxidative stress is emerging as a mechanism implicated in pathophysiology and progression of various diseases. To our knowledge, no report has been made on the status of antioxidant redox systems after continuous exposure to radiofrequency radiation emitted from a Wi-Fi access point in animal model so far. Therefore, we aimed to continuously subject rats in the experimental group to radiofrequency (RF) radiation emitted from a commercially available Wi-Fi device. Male Wister rats were exposed to 2.45 GHz RF radiation emitted from a Wi-Fi for 24 h/day for 10 consecutive weeks. In order to assess the change in antioxidant redox system of plasma after continuous exposure to a Wi-Fi device, the total antioxidant capacity of plasma, level of thiobarbituric acid reactive substances, concentration of reduced glutathione (GSH), and activity of different enzymatic antioxidants, e.g., superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], and glutathione S-transferase [GST], were measured. In the Wi-Fi exposed group, a significant decrease was detected in total antioxidant capacity of plasma and the activities of several antioxidant enzymes, including CAT, GSH-Px, and SOD (P < 0.05). Meanwhile, the GST activity was significantly increased in this group (P < 0.05). However, no significant changes were found in GSH and TBARS levels following exposure to RF radiation. According to the results, oxidative defense system in rats exposed to Wi-Fi signal was significantly affected compared to the control group. Further studies are needed to better understand the possible biological mechanisms of EMR emitted from Wi-Fi device and relevant outcomes.
Collapse
Affiliation(s)
- Kasra Kamali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Shayan Sayyadi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Fatemeh Zahra Gharib
- Department of Clinical Sciences, Babol Branch, Islamic Azad University, Babol, Iran
| | - Houman Maftoon
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| |
Collapse
|
21
|
Bilgici B, Gun S, Avci B, Akar A, K. Engiz B. What is adverse effect of wireless local area network, using 2.45 GHz, on the reproductive system? Int J Radiat Biol 2018; 94:1054-1061. [DOI: 10.1080/09553002.2018.1503430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Birşen Bilgici
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Gun
- Department of Pathology, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avci
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayşegül Akar
- Department of Biophysics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Begüm K. Engiz
- Department of Electrical and Electronics Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
22
|
Sheweita SA, Almasmari AA, El-Banna SG. Tramadol-induced hepato- and nephrotoxicity in rats: Role of Curcumin and Gallic acid as antioxidants. PLoS One 2018; 13:e0202110. [PMID: 30110401 PMCID: PMC6093657 DOI: 10.1371/journal.pone.0202110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tramadol is an analgesic used to treat moderate to severe pain caused by cancer, osteoarthritis, and other musculoskeletal diseases. Cytochrome P450 system metabolizes tramadol and induces oxidative stress in different organs. Therefore, the present study aims at investigating the changes in the activities and the protein expressions of CYPs isozymes (2E1, 3A4, 2B1/2), antioxidants status, free radicals levels after pretreatment of rats with Curcumin and/or Gallic as single- and/or repeated-doses before administration of tramadol. In repeated-dose treatments of rats with tramadol, the activities of cytochrome P450, cytochrome b5, and NADPH-cytochrome-c-reductase, and the antioxidant enzymes including glutathione reductase, glutathione peroxidase, glutathione S-transferase, catalase, superoxide dismutase, and levels of glutathione were inhibited in the liver and the kidney of rats. Interestingly, such changes caused by tramadol restored to their normal levels after pretreatment of rats with either Curcumin and/or Gallic acid. On the other hand, repeated-dose treatment of rats with tramadol increased the activities of both dimethylnitrosamine N-demethylase I (DMN-dI), and aryl hydrocarbon hydroxylase (AHH) compared to the control group. However, pretreatment of rats with Curcumin and/or Gallic acid prior to administration of tramadol restored the inhibited DMN-dI activity and its protein expression (CYP 2E1) to their normal levels. On the other hand, tramadol inhibited the activity of ethoxycoumarin O-deethylase (ECOD) and suppressed its protein marker expression (CYP2B1/2), whereas Curcumin, Gallic acid and/or their mixture restored such changes to their normal levels. In conclusion, Curcumin and/or Gallic acid alleviated the adverse effects caused by tramadol. In addition, patients should be advice to take Curcumin and/or Gallic acid prior to tramadol treatment to alleviate the hepatic and renal toxicities caused by tramadol.
Collapse
Affiliation(s)
- Salah A. Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| | - Ainour A. Almasmari
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| | - Sabah G. El-Banna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| |
Collapse
|
23
|
Saygin M, Ozmen O, Erol O, Ellidag HY, Ilhan I, Aslankoc R. The impact of electromagnetic radiation (2.45 GHz, Wi-Fi) on the female reproductive system: The role of vitamin C. Toxicol Ind Health 2018; 34:620-630. [PMID: 29848237 DOI: 10.1177/0748233718775540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study investigated the effects of applied continuous 2.45 GHz electromagnetic radiation (EMR), which might cause physiopathological or morphological changes in the ovarian, fallopian tubal, and uterine tissues of rats. We proposed that the addition of vitamin C (Vit C) may reduce these severe effects. Eighteen female Sprague Dawley rats were randomly divided into three groups with six animals in each: Sham, EMR (EMR, 1 h/day for 30 days), and EMR + Vit C (EMR, 1 h/day for 30 days 250 mg/kg/daily). Total oxidant status (TOS) and oxidative stress index (OSI) levels increased ( p = 0.011 and p = 0.002, respectively) in the EMR-only group in ovarian tissues. In all tissues, TOS and OSI levels significantly decreased in the Vit C-treated group in ovarian, fallopian tubal, and uterine tissues ( p < 0.05). Anti-müllerian hormone levels significantly increased in the EMR group ( p < 0.05) and decreased in the Vit C-treated groups. Estrogen (E2) levels were unchanged in the EMR group, as the differences were not statistically significant. Immunohistochemical examination of the ovaries revealed significant increases in Caspase-3 expressions in the epithelial cells of the EMR group ( p < 0.05). In the EMR group, hyperemia was observed in uterine tissues. Also, Caspase-3 and Caspase-8 were significantly increased in the EMR group ( p < 0.001). Caspase-3 was significantly diminished with Vit C application in the ovarian and uterine tissues ( p < 0.05). Caspase-8 was significantly diminished only in uterine tissues ( p < 0.05). These results indicate that prolonged EMR exposure induced physiopathological changes in the ovarian, fallopian tubal, and uterine tissues due to oxidative damage. Under the conditions of this study, Vit C may have protective effects on female reproductive system against oxidative damage.
Collapse
Affiliation(s)
- Mustafa Saygin
- 1 Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- 2 Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Onur Erol
- 3 Department of Gynecology and Obstetrics, Antalya Education and Research Hospital, Antalya, Turkey
| | - Hamit Yasar Ellidag
- 4 Department of Medical Biochemistry, Antalya Education and Research Hospital, Antalya, Turkey
| | - Ilter Ilhan
- 5 Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Rahime Aslankoc
- 1 Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
24
|
Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed Pharmacother 2017; 96:612-618. [DOI: 10.1016/j.biopha.2017.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
|
25
|
Zhang KY, Xu H, Du L, Xing JL, Zhang B, Bai QS, Xu YQ, Zhou YC, Zhang JP, Zhou Y, Ding GR. Enhancement of X-ray Induced Apoptosis by Mobile Phone-Like Radio-Frequency Electromagnetic Fields in Mouse Spermatocyte-Derived Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14060616. [PMID: 28590418 PMCID: PMC5486302 DOI: 10.3390/ijerph14060616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022]
Abstract
To explore the combined effects of environmental radio-frequency (RF) field and X-ray, mouse spermatocyte-derived (GC-1) cells were exposed to 1950 MHz RF field at specific absorption rate (SAR) of 3 W/kg for 24 h combined with or without X-ray irradiation at 6 Gy. After treatment, the cell proliferation level was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) Assay and 5-Bromo-2-deoxy Uridine (BrdU) enzyme linked immunosorbent (ELISA) Assay. The apoptosis level was detected by annexin V flow cytometry assay, transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) Assay and Caspase-3 Activity Assay. It was found that the proliferation and apoptosis level did not change in GC-1 cells after RF exposure alone. However, compared with the X-ray group, the proliferation level significantly decreased and the apoptotic rate significantly increased in the RF+X-ray group. Moreover, a significant decrease in Bcl-2 protein expression and increase in Bax protein expression were observed. The findings suggested that RF exposure at SAR of 3 W/kg did not affect apoptosis and proliferation in GC-1 cells by itself, but that it did enhance the effects of X-ray induced proliferation inhibition and apoptosis, in which B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) might be involved.
Collapse
Affiliation(s)
- Ke-Ying Zhang
- Department of Radiation Biology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Hui Xu
- Radiological College, Taishan Medical University, Taian 271000, China.
| | - Le Du
- Department of Radiation Biology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Jun-Ling Xing
- Department of Radiation Biology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Bin Zhang
- Student Brigade, Fourth Military Medical University,169# ChangLe West Road, Xi'an 710032, China.
| | - Qiang-Shan Bai
- Student Brigade, Fourth Military Medical University,169# ChangLe West Road, Xi'an 710032, China.
| | - Yu-Qiao Xu
- Department of Pathology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Yong-Chun Zhou
- Department of Radiation Oncology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Jun-Ping Zhang
- Department of Radiation Biology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Yan Zhou
- Department of Radiation Biology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| | - Gui-Rong Ding
- Department of Radiation Biology, Fourth Military Medical University, 169# ChangLe West Road, Xi'an 710032, China.
| |
Collapse
|
26
|
Pomjunya A, Ratthanophart J, Fungfuang W. Effects of Vernonia cinerea on reproductive performance in streptozotocin-induced diabetic rats. J Vet Med Sci 2017; 79:572-578. [PMID: 28190818 PMCID: PMC5383179 DOI: 10.1292/jvms.16-0466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study investigated the effects of Vernonia cinerea (VC) on the reproductive function in streptozotocin (STZ)-induced diabetic male
rats. Six-week-old male Sprague-Dawley rats were randomly divided into four groups: group 1, normal control rats; group 2, diabetic untreated rats; group 3,
diabetic rats treated with VC (10 mg/kg); and group 4, diabetic rats treated with VC (40 mg/kg). Diabetes mellitus (DM) was induced by intraperitoneal injection
of STZ (60 mg/kg). All animals were treated for 30 consecutive days. Body weight, blood glucose, food intake, epididymal sperm parameters, testicular
microstructure and serum testosterone levels were evaluated. VC treatment significantly restored the sperm motility and testosterone concentration, and
decreased the testicular histopathological changes in DM rats. Moreover, high-dose VC exhibited an antidibetic activity and significantly improved the sperm
count. In conclusion, we found, for the first time, that administration of VC significantly restored the testicular function and testosterone concentration in
diabetic male rats.
Collapse
Affiliation(s)
- Atchariya Pomjunya
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | |
Collapse
|