1
|
Chen W, Wu Y, Li W, Song M, Xu K, Wu M, Lin L. Vericiguat improves cardiac remodelling and function in rats with doxorubicin-induced cardiomyopathy. ESC Heart Fail 2025; 12:1807-1817. [PMID: 39822085 PMCID: PMC12055379 DOI: 10.1002/ehf2.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
PURPOSE Vericiguat, a soluble guanylate cyclase (sGC) stimulator, has been demonstrated effective in improving prognosis of patients with heart failure with reduced ejection fraction. However, there are limited data concerning the effect of vericiguat in patients with doxorubicin (DOX)-induced cardiomyopathy (DIC). In this study, we investigated the effects of vericiguat on cardiac structure and function in rats with DIC as well as their potential mechanisms of action. METHODS DIC rats were established by intraperitoneal injection of DOX (1 mg/kg) twice a week for 6 weeks, followed by intragastric administration of vericiguat 1 mg/kg/day or an equal volume of normal saline for 8 weeks. Cardiac histology and function, circulating levels of amino-terminal pro-B-type natriuretic peptide (NT-proBNP), nitric oxide (NO), and oxidative indices, as well as myocardial cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signalling, oxidative and apoptosis-associated protein were measured. RESULTS Compared with the control group, rats treated with DOX exhibited significantly increased heart size, reduced systolic function and elevated plasma levels of NT-proBNP. Histological findings revealed myocardial cell atrophy, fibrosis and apoptosis. Vericiguat treatment effectively reversed DOX-induced cardiac remodelling and improved systolic function. Mechanistically, Vericiguat attenuated the inhibitory effects of DOX on the myocardial cGMP-PKG axis and nuclear factor erythroid 2-related factor 2 (Nrf2) protein, thereby alleviating oxidative stress and apoptosis. CONCLUSIONS Vericiguat improved cardiac remodelling and contractile function in rats with DIC through upregulation of cGMP-PKG signalling and inhibition of oxidative stress and myocardial apoptosis.
Collapse
Affiliation(s)
- Wen Chen
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Ying Wu
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Wei Li
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Meiyan Song
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Kaizu Xu
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Meifang Wu
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Liming Lin
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| |
Collapse
|
2
|
Jirasit C, Navasumrit P, Chaisatra K, Chompoobut C, Waraprasit S, Parnlob V, Ruchirawat M. Genotoxicity and fibrosis in human hepatocytes in vitro from exposure to low doses of PBDE-47, arsenic, or both chemicals. Chem Biol Interact 2025; 410:111410. [PMID: 39922519 DOI: 10.1016/j.cbi.2025.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Improper disposal and recycling of electronic waste (e-waste) has been shown to cause extensive environmental pollution and human health effects. Among the pollutants, 2,2',4,4' Tetrabromodiphenyl Ether (PBDE-47) and arsenic are highly prevalent. This study aimed to investigate genotoxic and fibrosis effects, and their mechanistic relationships from exposure to PBDE-47, arsenic, or both chemicals in a human hepatocyte epithelial cell line (THLE-2). Non-cytotoxic concentrations of 5 μM PBDE-47 (2848 ppb), 0.5 μM arsenite (37.46 ppb), or co-exposure to both were selected and cells were exposed for 7 days. The co-exposure increased the effect of lipid peroxidation (MDA and 4-HNE) and the expression of inflammatory genes (CXCL6, CXCL8, and TGF-β1) over that of PBDE-47 or arsenite alone. Furthermore, the co-exposure significantly increased the level of mutagenic DNA adducts including MDA-derived DNA adducts (Pyrimido[1,2-a]purin-10(3H)-one, M1dG), 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine; but decreased mRNA expression of an antioxidant defense regulator (NFE2L2) and DNA repair genes (hOGG1 and XRCC1). Regarding biological effects, the co-exposure increased cell migration, a hallmark of epithelial-mesenchymal transition (EMT); down-regulated the epithelial expression (E-cadherin); up-regulated mesenchymal expression (Vimentin); and promoted fibrosis expression (up-regulated ACTA2, FSP-1, and COL1A1). Collectively, these findings indicate that the co-exposure significantly induced a cascade of toxicological effects of overexposure to individual chemicals. The observed genotoxicity, abnormal gene expression, and fibrosis in hepatocytes indicate mechanisms and potentially further increase of health hazards than currently recognized in populations exposed to e-waste chemicals.
Collapse
Affiliation(s)
- Chonnikarn Jirasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-Graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-Graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Krittinee Chaisatra
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Chalida Chompoobut
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Somchamai Waraprasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Varabhorn Parnlob
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-Graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| |
Collapse
|
3
|
Ling X, Jiao Q, Lin D, Chen J, Han Y, Meng J, Zhong B, Zhang H, Zhang G, Zhu F, Qin J, Ruan Y, Liu L. Extrachromosomal circular DNA containing DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1. BMC Cancer 2024; 24:1448. [PMID: 39587541 PMCID: PMC11587744 DOI: 10.1186/s12885-024-13177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a novel class of DNA with a circular topological structure, is present in a variety of cancer cells and tissues and may play broad roles in processes ranging from aging to cancer cell heterogeneity through multiple mechanisms. EccDNA has been characterized by profile, structure and function in several prominent studies but its effect on hydroquinone (HQ)-induced malignantly transformed cells (TK6-HQ) is still elusive. METHODS Circle-seq was applied to determine the eccDNA counts and characteristics of TK6-HQ cells. DNA-fluorescence in situ hybridization was used to measure the abundance of eccDNA_DTX1. Differential gene expression analysis was carried out by RNA-seq. Gene expression was quantified by wertern blot and qPCR. Decircularization of eccDNA_DTX1 was achieved by CRISPR/Cas9. Tumorigenicity was evaluated by xenograft assay in BALB/c nude mice. RESULTS In this study, we characterized the structure of eccDNAs and the function of DTX1-containing eccDNA (eccDNA_DTX1) in TK6-HQ cells. A total of 669,179 eccDNAs were identified, including 901 eccDNAs with different counts. Most of the eccDNAs were < 1000 bp in length and were enriched in four periodic peaks starting at 186 bp with an interval of ~ 180 bp. The genomic distribution of eccDNAs confirmed that eccDNAs could be observed across all chromosomes and had greater enrichment on chromosomes 17, 19, 20, and 22, with abundant Alu repeat elements, introns and CpG islands. By combining the results of the integrated circle-seq analysis of eccDNAs with those from the RNA-seq analysis (differentially expressed genes, 1064 upregulated and 427 downregulated), the authors showed that the transcription of 20 potential coding genes might be driven by eccDNAs. Finally, the knockdown of eccDNA_DTX1 by CRISPR/Cas9 inhibited the growth of TK6-HQ cells in vitro and in vivo by inhibiting the transcription of DTX1 and promoting ferroptosis, and ferroptosis inhibior, Ferrostatin-1, abrogated the proliferation inhibition of eccDNA_DTX1 knockdown. CONCLUSIONS EccDNA_DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1 and ferroptosis. This study profiles eccDNA characteristics and defines the role and mechanism of eccDNA_DTX1 for the first time, shedding new light on the relationship between eccDNAs and carcinogenesis.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Qunfang Jiao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Daifan Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Gongda Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Fangling Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jiheng Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Meidical University, Dongguan, 523808, P.R. China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523722, P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
| |
Collapse
|
4
|
Zhang H, Chen Q, Han H, Guo C, Jiang X, Xia Y, Zhang Y, Zhou L, Zhang J, Tian X, Mao L, Qiu J, Zou Z, Chen C. SUMOylation modification of FTO facilitates oxidative damage response of arsenic by IGF2BP3 in an m6A-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134440. [PMID: 38723480 DOI: 10.1016/j.jhazmat.2024.134440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.
Collapse
Affiliation(s)
- Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Huifang Han
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Changxin Guo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
5
|
Liu Y, Zhou J, Luo Y, Li J, Shang L, Zhou F, Yang S. Honokiol alleviates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via Nrf2 activation in vitro and in vivo. Chin Med 2021; 16:127. [PMID: 34844623 PMCID: PMC8628413 DOI: 10.1186/s13020-021-00541-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
Background Honokiol (HKL) has been reported to ameliorate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, its potential mechanism of its protective effects remains unclear. In this study, the protective mechanism of HKL on LPS-induced ALI was explored in vivo and in vitro. Methods In vivo, the SD rats were intratracheally instilled with LPS (5 mg/kg) to establish an acute lung injury model and then treated with HKL (1.25/2.5/5 mg/kg) or ML385 (30 mg/kg) intraperitoneally. In vitro, the human bronchial epithelial cell line (BEAS-2B) was stimulated with LPS and ATP to induce pyroptosis and treated with HKL (12.5/25/50 μM). Small interfering RNA (siRNA) technique was used to knockdown Nrf2 in BEAS-2B cells. The protein and mRNA expression levels of Nrf2, HO-1, NLRP3, ASC, CASP1, and GSDMD in cells and lung tissues were detected by western blot and real time-PCR. The expression levels of interleukin (IL)-1β, IL-18, MPO, MDA, and SOD in bronchoalveolar lavage fluid (BALF) and supernatant were determined by ELISA. The degree of pathological injury of lung tissue was evaluated by H&E staining. Results The results showed that HKL could alleviate oxidative stress and inflammatory responses by regulating the levels of MPO, MDA, SOD, IL-1β, IL-18 in supernatant. And it could also inhibit the expression levels of NLRP3, ASC, CASP1, GSDMD via activation of Nrf2 in BEAS-2B cells. Further studies revealed that HKL could attenuate the pathological injury in LPS-induced ALI rats, and the molecular mechanism was consistent with the results in vitro. Conclusions Our study demonstrated that HKL could alleviate LPS-induced ALI by reducing the oxidative stress and inhibiting NLRP3 inflammasome-mediated pyroptosis, which was partly dependent on the Nrf2 activation. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiabin Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingying Luo
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Kim C, Chen J, Ceresa BP. Chronic arsenic increases cell migration in BEAS-2B cells by increasing cell speed, cell persistence, and cell protrusion length. Exp Cell Res 2021; 408:112852. [PMID: 34599931 DOI: 10.1016/j.yexcr.2021.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is a strong association between arsenic exposure and lung cancer development, however, the mechanism by which arsenic exposure leads to carcinogenesis is not clear. In our previous study, we observed that when BEAS-2B cells are chronically exposed to arsenic, there is an increase in secreted TGFα, as well as an increase in EGFR expression and activity. Further, these changes were broadly accompanied with an increase in cell migration. The overarching goal of this study was to acquire finer resolution of the arsenic-dependent changes in cell migration, as well as to understand the role of increased EGFR expression and activity levels in the underlying mechanisms of cell migration. To do this, we used a combination of biochemical and single cell assays, and observed chronic arsenic treatment enhancing cell migration by increasing cell speed, cell persistence and cell protrusion length. All three parameters were further increased by the addition of TGFα, indicating EGFR activity is sufficient to enhance those aspects of cell migration. In contrast, EGFR activity was necessary for the increase in cell speed, as it was reversed with an EGFR inhibitor, AG1478, but was not necessary to enhance persistence and protrusion length. From these data, we were able to isolate both EGFR-dependent and -independent features of cell migration that were enhanced by chronic arsenic exposure.
Collapse
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, USA
| | - Joseph Chen
- Department of Pharmacology and Toxicology, University of Louisville, USA; Department of Bioengineering, University of Louisville, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, USA.
| |
Collapse
|
7
|
The Foraging Gene, a New Environmental Adaptation Player Involved in Xenobiotic Detoxification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147508. [PMID: 34299961 PMCID: PMC8305630 DOI: 10.3390/ijerph18147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Foraging is vital for animals, especially for food. In Drosophila melanogaster, this behavior is controlled by the foraging gene (for) which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). In wild populations of Drosophila, rover individuals that exhibit long foraging trails and sitter individuals that exhibit short ones coexist and are characterized by high and low levels of PKG activity, respectively. We, therefore, postulated that rover flies are more exposed to environmental stresses, including xenobiotics contamination, than sitter flies. We then tested whether these flies differed in their ability to cope with xenobiotics by exposing them to insecticides from different chemical families. We performed toxicological tests and measured the activity and expression levels of different classes of detoxification enzymes. We have shown that a link exists between the for gene and certain cytochrome P450-dependent activities and that the expression of the insecticide-metabolizing cytochrome P450 Cyp6a2 is controlled by the for gene. An unsuspected regulatory pathway of P450s expression involving the for gene in Drosophila is revealed and we demonstrate its involvement in adaptation to chemicals in the environment. This work can serve as a basis for reconsidering adaptation to xenobiotics in light of the behavior of species, including humans.
Collapse
|
8
|
Kim C, Ceresa BP. Using In Vitro Models to Dissect the Molecular Effects of Arsenic Exposure in Skin and Lung Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:71-88. [DOI: 10.1089/aivt.2020.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Li D, Bai X, Jiang Y, Cheng Y. Butyrate alleviates PTZ-induced mitochondrial dysfunction, oxidative stress and neuron apoptosis in mice via Keap1/Nrf2/HO-1 pathway. Brain Res Bull 2020; 168:25-35. [PMID: 33359640 DOI: 10.1016/j.brainresbull.2020.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
This study aims to evaluate the neuroprotective effect of sodium butyrate against the pentylenetetrazol (PTZ)-induced kindling epilepsy. Sodium butyrate (SB) (5, 10 and 20 mg/kg) and sodium valproate for 40 days and PTZ (37 mg/kg) injection every day were conducted for Kunming mice, to investigate seizure intensity and latency, oxidative stress parameters, mitochondrial structure and function, histopathology, and Keap1/Nrf2/HO-1 expressions. It is shown that seizure latency was effectively increased and the intensity of seizures decreased by treatment with sodium butyrate. It was also found to reverse the structural disruption of the mitochondria, reduce the ROS level and improve the levels of NAD + and ATP in the brains of epileptic mice. Furthermore, pretreatment with SB led to an increase in antioxidant enzyme activity (CAT, SOD and GSH-PX) in the brain as well as conferred a neuroprotective effect against neuron loss and apoptosis. The activation of Keap1/Nrf2/HO-1 signals was also identified, in which the antiepileptic effect of SB may be partially due to its anti-mitochondrial injury and neuroprotective activities. Accordingly, the results of a series of functional tests indicate a significant improvement of neurological function following SB treatment. In a mouse model of seizures, brain injury and neurological deficits can be attenuated by treatment with butyrate through the activation of Nrf2 pathway and the improvement of mitochondrial function.
Collapse
Affiliation(s)
- Dongyue Li
- Hong Kong Baptist University, Hong Kong, PR China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Li X, Zuo C, Sun D, Zhao T, Zhang Z. Arsenite Increases Linc-ROR in Human Bronchial Epithelial Cells that Can Be Inhibited by Antioxidant Factors. Biol Trace Elem Res 2020; 198:131-141. [PMID: 32030632 DOI: 10.1007/s12011-020-02065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress is the main mechanism of arsenite toxicity. Long intergenic non-coding RNA regulator of reprogramming is a newly found stress-response long non-coding RNA that is activated in various stress conditions. However, whether long intergenic non-coding RNA, regulator of reprogramming (linc-ROR) is involved in arsenite-induced oxidative stress has not been explored. In this study, we found that arsenite dose responsively increased the expression of linc-ROR in human bronchial epithelial (HBE) cells, along with elevated oxidative stress demonstrated by increased intracellular reactive oxygen species (ROS) and DNA damage, as well as decreased antioxidant glutathione and superoxide dismutase. We further found that the pre-treatment with N-acetylcysteine, a widely used ROS scavenger, and the over-expression of antioxidant NRF2 protein, both significantly reduced arsenite-induced oxidative stress in arsenite-treated HBE cells, and the linc-ROR over-expression was also inhibited, suggesting that oxidative stress is a key factor for the increase of linc-ROR in arsenite-treated HBE cells. Moreover, our results of bio-informatic analysis showed that arsenite-induced oxidative stress might modulate linc-ROR expression via 3 genes and the up-regulated linc-ROR in arsenite-induced oxidative stress may get involved in cellular processes such as cellular stress response, RNA metabolism, and DNA repair. Collectively, our study demonstrates that oxidative stress plays the key role in arsenite-induced over-expression of linc-ROR, and linc-ROR may be a new clue for exploring the mechanism of arsenite toxicity.
Collapse
Affiliation(s)
- Xinyang Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, 610041, Chengdu, People's Republic of China
| | - Chao Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, 610041, Chengdu, People's Republic of China
| | - Donglei Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, 610041, Chengdu, People's Republic of China
| | - Tianhe Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, 610041, Chengdu, People's Republic of China
| | - Zunzhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
12
|
Li X, Sun D, Zhao T, Zhang Z. Long non-coding RNA ROR confers arsenic trioxide resistance to HepG2 cells by inhibiting p53 expression. Eur J Pharmacol 2020; 872:172982. [PMID: 32017938 DOI: 10.1016/j.ejphar.2020.172982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide is an effective drug in the treatment of hematologic malignancies, but it has no obvious therapeutic effect on liver cancer. Long non-coding RNA ROR is a newly found long-noncoding RNA that has been reported to get involved in the regulation of chemo-resistance in multiple cancers. However, whether and how long non-coding RNA ROR gets involved in the resistance to arsenic trioxide in liver cancer has not been explored. In this study, We found that cellular apoptosis was increased by arsenic trioxide in liver cancer HepG2 cells; P53 expression was also increased by arsenic trioxide at both mRNA level and protein level, indicating that P53-dependent apoptosis is the main mechanism for arsenic trioxide to induce cytotoxicity in liver cancer HepG2 cells. Meanwhile, we found an obvious increase in the level of long non-coding RNA ROR in arsenic trioxide-treated HepG2 cells. By measuring the level of reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde, the product of lipid peroxidation, we further demonstrated that oxidative stress was a potential factor for both the activation of P53 expression and the increase in long non-coding RNA ROR expression. Through the knock-down of long non-coding RNA ROR by siRNA, we revealed that the activated long non-coding RNA ROR ameliorated arsenic trioxide-induced apoptosis by inhibiting P53 expression. Together, our study reported that long non-coding RNA ROR conferred arsenic trioxide resistance to liver cancer cells through inhibiting P53 expression, and long non-coding RNA ROR might be a novel sensitizing target for liver cancer treatment.
Collapse
Affiliation(s)
- Xinyang Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Donglei Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tianhe Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zunzhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
13
|
Zhang S, Cheng S, Jiang X, Zhang J, Bai L, Qin X, Zou Z, Chen C. Gut-brain communication in hyperfunction of 5-hydroxytryptamine induced by oral zinc oxide nanoparticles exposure in young mice. Food Chem Toxicol 2019; 135:110906. [PMID: 31669603 DOI: 10.1016/j.fct.2019.110906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) have been widely used in food storage containers and food additives in daily life. However, the impact of oral intake of ZnONPs on nervous system is extremely limited, especially on children and adolescents. In this study, four weeks old mice were treated with either vehicle or ZnONPs suspension solution at 26 mg/kg by intragastric administration for 30 days. Our results demonstrated that oral ZnONPs exposure could induce pathological changes in gut and abnormal excitement of enteric neurons. Interestingly, we found that ZnONPs caused enhancement of 5-hydroxytryptamine (5-HT) in gut by activation of its biosynthesis, transport and receptors, and subsequently resulting in increased level of 5-HT in brain via gut-brain communication by blood. Our data also showed that there were no apparent changes on the expressions of interleukin (Il)-6, Il-1β, C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf) in gut and zinc chelator Mt2 in gut and cortex. Meanwhile, no significant changes were observed on the expressions of tryptophan hydroxylase type 1, 5-HT receptor 3A (Htr3a) and Htr4 in hippocampus and cortex. Our study indicate that oral ZnONPs exposure causes hyperfunction of 5-HT in gut in young mice which may further spread to brain via gut-brain communication.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
14
|
Tang Q, Bai L, Zou Z, Meng P, Xia Y, Cheng S, Mu S, Zhou J, Wang X, Qin X, Cao X, Jiang X, Chen C. Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure. Neurotoxicology 2018; 67:27-36. [PMID: 29678591 DOI: 10.1016/j.neuro.2018.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Ferroptosis is a novel iron-dependent form of cell death implicated in brain pathology. However, whether arsenite is an inducer of ferroptosis in the neuron remains completely unknown. In this study, the seven-week-old healthy C57BL/6 J male mice were treated with environmental related doses (0.5, 5 and 50 mg/L) of arsenite for 6 months via drinking water, and the ferroptosis-related indicators were further determined. Our results demonstrated for the first time that, arsenite exposure significantly reduced the number of neuron and caused the pathological changes of mitochondria in the cerebral cortex of mice. We further revealed that arsenite induced ferroptotic cell death in neuron by accumulation of reactive oxygen species and lipid peroxidation products, disruption of Fe2+ homeostasis, depletion of glutathione and adenosine triphosphate, inhibition of cysteine/glutamate antiporter, activation of mitogen-activated protein kinases and mitochondrial voltage-dependent anion channels pathways, up-regulation of endoplasmic reticulum stress, all of which were involved in the process of ferroptosis. These findings were also verified in the cultured PC-12 cells by using ferropotosis inhibitor, desferoxamine. Taken together, our results not only reveal a novel mechanism that chronic arsenite exposure may trigger the new form of cell death, ferroptosis, but also shed a new light on a potential clue for the intervention and prevention against arsenite-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shaoyu Mu
- Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianrong Zhou
- Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianqing Cao
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
15
|
Fiorani M, Guidarelli A, Capellacci V, Cerioni L, Crinelli R, Cantoni O. The dual role of mitochondrial superoxide in arsenite toxicity: Signaling at the boundary between apoptotic commitment and cytoprotection. Toxicol Appl Pharmacol 2018. [DOI: 10.1016/j.taap.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Gu S, Lai Y, Chen H, Liu Y, Zhang Z. miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci Rep 2017; 7:12155. [PMID: 28939896 PMCID: PMC5610328 DOI: 10.1038/s41598-017-06061-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Arsenic trioxide (ATO) resistance is a challenging problem in chemotherapy. However, the underlying mechanisms remain to be elucidated. In this study, we identified a high level of expression of miR-155 in a human lung adenocarcinoma A549R cell line that is highly resistant to ATO. We showed that the high level of miR-155 was associated with increased levels of cell survival, colony formation, cell migration and decreased cellular apoptosis, and this was mediated by high levels of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1) and a high ratio of Bcl-2/Bax. Overexpression of the miR-155 mimic in A549R cells resulted in increased levels of colony formation and cell migration as well as reduced apoptosis along with increased Nrf2, NQO1 and HO-1. In contrast, silencing of miR-155 expression with its inhibitor in the cells, significantly decreased the cellular levels of Nrf2, NQO1 and HO-1 as well as the ratio of Bcl-2/Bax. This subsequently reduced the level of colony formation and cell migration facilitating ATO-induced apoptosis. Our results indicate that miR-155 mediated ATO resistance by upregulating the Nrf2 signaling pathway, but downregulating cellular apoptosis in lung cancer cells. Our study provides new insights into miR-155-mediated ATO resistance in lung cancer cells.
Collapse
Affiliation(s)
- Shiyan Gu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Hongyu Chen
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA. .,Biochemistry Ph.D. Program, Florida International University, Miami, Florida, 33199, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA.
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
17
|
Wu Y, Jiang X, Yang K, Xia Y, Cheng S, Tang Q, Bai L, Qiu J, Chen C. Inhibition of α-Synuclein contributes to the ameliorative effects of dietary flavonoids luteolin on arsenite-induced apoptotic cell death in the dopaminergic PC12 cells. Toxicol Mech Methods 2017; 27:598-608. [DOI: 10.1080/15376516.2017.1339155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi Wu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Jiulongpo Municipal Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Kai Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jingfu Qiu
- Department of Hygiene Inspection and Quarantine, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|