1
|
Taromsari S, Eidi A, Mortazavi P, Modaresi M. Effect of Nano Selenium on Cadmium Chloride-Induced Infertility in Male Wistar Rats. J Biochem Mol Toxicol 2025; 39:e70179. [PMID: 39959944 DOI: 10.1002/jbt.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
Selenium (Se) is an essential trace element with well-documented health benefits, including antioxidative, anti-inflammatory, antiapoptotic, and anticarcinogenic properties. Selenium nanoparticles (nano-Se) represent an advanced Se delivery system characterized by superior bioavailability and a reduced risk of Se-related toxicity. This study investigates the protective efficacy of nano-Se against cadmium chloride (CdCl2)-induced infertility in adult male Wistar rats. The experimental design involved random allocation of the rats into nine groups: a healthy control group, a vehicle control group, three groups receiving nano-Se alone at 0.05, 0.1, and 0.2 mg/kg b.w./day, a group exposed to CdCl2 to induce infertility, and three CdCl2-exposed groups treated with nano-Se. After 30 days of treatment, the animals were euthanized for biochemical and histopathological assessments. The findings revealed that nano-Se administration ameliorated the detrimental effects of treatment CdCl2 on serum testosterone levels. Additionally, nano-Se significantly reduced malondialdehyde levels and enhanced the activity of antioxidant enzymes in testicular homogenates. Histological analyses further demonstrated that nano-Se preserved the structural integrity of testicular tissue in the CdCl2-induced fertility model. Nano-Se modulated apoptotic pathways, as evidenced by the suppression of Bax expression and upregulation of Bcl2 expression in testicular tissue. Furthermore, nano-Se mitigated the overexpression of aquaporin-9 in CdCl2-exposed rats. Collectively, these results provide robust biochemical, histological, and biochemical evidence supporting the potential therapeutic utility of nano-Se in mitigating testicular dysfunction.
Collapse
Affiliation(s)
- Shahrbano Taromsari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Modaresi
- Department of Animal Biology, Faculty of Biological Sciences, Islamic Azad University of Khorasgan Branch, Esfahan, Iran
| |
Collapse
|
2
|
Wang Z, Chen H. Bradykinin attenuates NiSO 4-induced autophagy in MIN6 cells and protects islet function in mice by regulating the PI3K/AKT/mTOR signaling pathway. Biochem Biophys Res Commun 2025; 746:151265. [PMID: 39756208 DOI: 10.1016/j.bbrc.2024.151265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Previous studies have shown that nickel sulfate (NiSO4) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO4 increases pancreatic autophagy. Bradykinin (BK) is an important component of the kallikrein-kinin system (KKS) and has many biological functions, such as reducing autophagy. The purpose of the present study was to explore the effects of BK on NiSO4-induced changes in pancreatic endocrine function. The present results demonstrate that NiSO4 increases fasting blood glucose (FBG) within a certain range and decreases insulin levels in mice. Moreover, NiSO4 triggers incomplete autophagy in MIN6 cells by upregulating microtubule-associated protein 1 light chain 3-II (LC3II) and Beclin 1 but downregulating p62. Mechanistically, NiSO4 leads to abnormal activation of autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. Moreover, BK decreases FBG and increases insulin secretion in mice exposed to NiSO4. Light microscopy and transmission electron microscopy (TEM) analyses revealed that BK pretreatment partially restores MIN6 cell viability and decreases the number of autophagic bodies. BK significantly upregulates the protein levels of LC3II and Beclin1 but downregulates p62 in NiSO4-induced MIN6 cells. In addition, BK increases the levels of phosphorylated phosphatidylinositol 3-kinase (P-PI3K), phosphorylated protein kinase B (P-AKT) and mammalian target of rapamycin (mTOR). Most of these effects of BK are reversed by treatment with the HOE140 B2R inhibitor. The present results suggested that BK ameliorates NiSO4-induced pancreatic β-cell dysfunction through B2R-mediated activation of the PI3K/AKT/mTOR signaling pathway and inhibition of autophagy.
Collapse
Affiliation(s)
- Zhuanping Wang
- Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Hui Chen
- Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
3
|
Deng H, Lou Y, He R, Deng J, Zhu Y, Wu X, Guo H. RETRACTED ARTICLE: Copper Exposure Destroys the Integrity of the Blood-Testis Barrier (BTB) Through p38 MAPK-Meditated Autophagy Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04449-1. [PMID: 39551859 DOI: 10.1007/s12011-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yanbin Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaoli Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
4
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
5
|
Zeng Y, Yang Q, Ouyang Y, Lou Y, Cui H, Deng H, Zhu Y, Geng Y, Ouyang P, Chen L, Zuo Z, Fang J, Guo H. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice. Redox Biol 2023; 67:102886. [PMID: 37742495 PMCID: PMC10520947 DOI: 10.1016/j.redox.2023.102886] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Nickel (Ni) is an essential common environmental contaminant, it is hazardous to male reproduction, but the precise mechanisms are still unknown. Blood-testis barrier (BTB), an important testicular structure consisting of connections between sertoli cells, is the target of reproductive toxicity caused by many environmental toxins. In this study, ultrastructure observation and BTB integrity assay results indicated that NiCl2 induced BTB damage. Meanwhile, BTB-related proteins including the tight junction (TJ), adhesion junction (AJ) and the gap junction (GJ) protein expression in mouse testes as well as in sertoli cells (TM4) were significantly decreased after NiCl2 treatment. Next, the antioxidant N-acetylcysteine (NAC) was co-treated with NiCl2 to study the function of oxidative stress in NiCl2-mediated BTB deterioration. The results showed that NAC attenuated testicular histopathological damage, and the expression of BTB-related proteins were markedly reversed by NAC co-treatment in vitro and vivo. Otherwise, NiCl2 activated the p38 MAPK signaling pathway. And, NAC co-treatment could significantly inhibit p38 activation induced by NiCl2 in TM4 cells. Furthermore, in order to confirm the role of the p38 MAPK signaling pathway in NiCl2-induced BTB impairment, a p38 inhibitor (SB203580) was co-treated with NiCl2 in TM4 cells, and p38 MAPK signaling inhibition significantly restored BTB damage induced by NiCl2 in TM4 cells. These results suggest that NiCl2 treatment destroys the BTB, in which the oxidative stress-mediated p38 MAPK signaling pathway plays a vital role.
Collapse
Affiliation(s)
- Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yanbin Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Lian Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| |
Collapse
|
6
|
Wang S, Gu X, Ma J, Gu Z, Zhang R, Li R, Bai J, Li P, Wei L, Ye Y, Wang Y, Zhang L, Su L, Liang C. Selenium nanoparticles improve nickel-induced testosterone synthesis disturbance by down-regulating miR-708-5p/p38 MAPK pathway in Leydig cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37126647 DOI: 10.1002/tox.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The present study was designed to investigate the role of miR-708-5p/p38 mitogen-activated protein kinase (MAPK) pathway during the mechanism of selenium nanoparticles (Nano-Se) against nickel (Ni)-induced testosterone synthesis disorder in rat Leydig cells. We conducted all procedures based on in vitro culture of rat primary Leydig cells. After treating Leydig cells with Nano-Se and NiSO4 alone or in combination for 24 h, we determined the cell viability, reactive oxygen species (ROS) levels, testosterone production, and the protein expression of key enzymes involved in testosterone biosynthesis: steroidogenic acute regulatory (StAR) and cytochrome P450 cholesterol side chain cleavage enzyme (CYP11A1). The results indicated that Nano-Se antagonized cytotoxicity and eliminated ROS generation induced by NiSO4 , suppressed p38 MAPK protein phosphorylation and reduced miR-708-5p expression. Importantly, we found that Nano-Se upregulated the expression of testosterone synthase and increased testosterone production in Leydig cells. Furthermore, we investigated the effects of p38 MAPK and miR-708-5p using their specific inhibitor during Nano-Se against Ni-induced testosterone synthesis disorder. The results showed that Ni-inhibited testosterone secretion was alleviated by Nano-Se co-treatment with p38 MAPK specific inhibitor SB203580 and miR-708-5p inhibitor, respectively. In conclusion, these findings suggested Nano-Se could inhibit miR-708-5p/p38 MAPK pathway, and up-regulate the key enzymes protein expression for testosterone synthesis, thereby antagonizing Ni-induced disorder of testosterone synthesis in Leydig cells.
Collapse
Affiliation(s)
- Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhangyu Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ruifen Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Jun Bai
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Peng Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Linyu Wei
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yan Wang
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
7
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
8
|
Liu Y, Ma W, Liu Q, Liu P, Qiao S, Xu L, Sun Y, Gai X, Zhang Z. Decreased thioredoxin reductase 3 expression promotes nickel-induced damage to cardiac tissue via activating oxidative stress-induced apoptosis and inflammation. ENVIRONMENTAL TOXICOLOGY 2023; 38:436-450. [PMID: 36421005 DOI: 10.1002/tox.23710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Thioredoxin reductase 3 (Txnrd3) plays a crucial role in antioxidant and anti-cancer activities, and sperm maturation. The damage of heavy metals, including Nickel (Ni), is the most prominent harm in social development, and hampering Txnrd3 might exacerbate Ni-induced cardiac damage. In this study, a total of 160 8-week-old C57BL/N male mice with 25-30 g weight of Txnrd3+/+ wild-type and Txnrd3-/- homozygote-type were randomly divided into eight groups. The mice in the control and Ni groups were gavaged with distilled water and a freshly prepared 10 mg/kg NiCl2 solution. Melatonin (Mel) groups were administered at a concentration of 2 mg/kg for 21 days at the mice's 0.1 ml/10 g body weight. Ni exposure up-regulated the messenger RNA (mRNA) levels of mitochondrial apoptosis (caspase-3, caspase-9, cytochrome c, p53, and BAX), autophagy (LC3, ATG 1, ATG 7, and Beclin-1), and inflammation (TNF-α, COX 2, IL-1β, IL-2, IL-6, and IL-7)-related markers, but down-regulated the mRNA levels of BCL-2, p62 and mTOR (p < .05). Ni exposure decreased the expression of BCL-2 and p62 protein but increased the expression levels of caspase-3, caspase-9, cytochrome c, p53, BAX, ATG 7, Beclin-1, TNF-α, COX 2, IL-1β and IL-2 protein (p < .05). Ni increased the contents of glutathione disulfide (GSSG) and malondialdehyde (MDA) and decreased the activities of catalase (CAT) and total superoxide dismutase (T-SOD) (p < .05). Decreased Txnrd3 expression significantly exacerbated changes compared to the Ni exposure (p < .05). Mel significantly attenuated these changes, but the effect decreased when Txnrd3 was inhibited (p < .05). In conclusion, decreased Txnrd3 expression promoted Ni-induced mitochondrial apoptosis and inflammation via oxidative stress and aggravated heart damage in mice. Decreased Txnrd3 expression significantly reduced the protective effect of Mel to Ni exposure.
Collapse
Affiliation(s)
- Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoxue Gai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education, Harbin, China
| |
Collapse
|
9
|
Marić Đ, Baralić K, Javorac D, Mandić Rajčević S, Đukić-Ćosić D, Antonijević Miljaković E, Aćimović M, Bulat Z, Aschner M, Buha Djordjevic A. Puzzling relationship between levels of toxic metals in blood and serum levels of reproductive hormones: Benchmark dose approach in cross-sectional study. ALL LIFE 2022; 15:1052-1064. [PMID: 36278024 PMCID: PMC9585479 DOI: 10.1080/26895293.2022.2128439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reproductive disorders and infertility have become more common recently among the general population. Toxic metals are known as endocrine disruptors and as they are widespread in nature they may be linked to reproductive problems. This study was conducted as a cross-sectional study and its aim was to examine the dose–response relationship between cadmium, arsenic, mercury, chromium and nickel and serum hormone levels of testosterone (women) and estradiol and progesterone (men) using the Benchmark dose approach (BMD). Blood samples were collected from 218 women and 217 men digested in a microwave, and the levels of the tested metals were determined by atomic absorption spectrophotometry (AAS) or inductively coupled plasma-mass spectrometry (ICP-MS). Dose–response analysis was performed in PROAST software (version 70.1). The model averaging method was used to calculate the Benchmark dose interval (BMDI). A dose–response relationship has been established between all metals and hormones. The narrowest BMDI was found for the As-testosterone and Hg-testosterone. Levels estimated to produce the extra risk of testosterone serum levels disturbances of 10% were lower than median levels measured in the general population. Moreover, this research suggests the possibility of use of the BMD approach in analyzing data pool generated from extensive human-biomonitoring studies.
Collapse
Affiliation(s)
- Đurđica Marić
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Stefan Mandić Rajčević
- School of Public Health and Health Management and Institute of Social Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | | | - Zorica Bulat
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | | | - Aleksandra Buha Djordjevic
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
10
|
Du H, Zheng Y, Zhang W, Tang H, Jing B, Li H, Xu F, Lin J, Fu H, Chang L, Shu G. Nano-Selenium Alleviates Cadmium-Induced Acute Hepatic Toxicity by Decreasing Oxidative Stress and Activating the Nrf2 Pathway in Male Kunming Mice. Front Vet Sci 2022; 9:942189. [PMID: 35958302 PMCID: PMC9362431 DOI: 10.3389/fvets.2022.942189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH (P < 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group (P < 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Hong Du
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilei Zheng
- College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijen Chang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Lijen Chang
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Gang Shu
| |
Collapse
|
11
|
Eisa CS, Mohammed SS, El-Aziz HIA, Farghaly LM, Hosny S. The Effect of Selenium Nanoparticles versus Royal Jelly against Cisplatin-Induced Testicular Toxicity in Adult Male Albino Rats: A Light and Transmission Electron Microscopic Study. J Microsc Ultrastruct 2022; 10:180-196. [PMID: 36687330 PMCID: PMC9846925 DOI: 10.4103/jmau.jmau_44_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023] Open
Abstract
Background and Aim Cisplatin (Cis) is a highly effective chemotherapeutic agent. However, it produces severe testicular toxicity. It was reported that some antioxidants could overcome this toxicity. Selenium nanoparticles and royal jelly (RJ) were among these reported antioxidants. Therefore, this study was designed to compare these two antioxidants in protecting the testes against Cis-induced toxicity. Materials and Methods This study was conducted on sixty healthy adult male albino rats (weight: 200-220 g) randomized into six groups, ten animals each. Group I (control), Group II (animals received intragastric Nano Selenium), Group III (animals received intragastric RJ), Group IV (animals received an IP injection of Cis 7 mg/kg), Group V (animals received intragastric Nano Selenium, and Cis injection), and Group VI (animals received intragastric RJ and Cis injection). After 10 days, the animals were sacrificed by cervical decapitation. The testes were weighted, and specimens from the left testis were processed for histological and immunohistochemical techniques, whereas specimens from the right testes were prepared for transmission electron microscopic examination. Results Cis-treated animals had significantly reduced weight of their testes. Light microscopic examination revealed severe histopathological changes in the germinal epithelium and Leydig cells, confirmed with electron microscopic examination. There was a significant increase in the color area percentage of Caspase-3 immunostaining of the germinal epithelium and Leydig cells, compared to that of the control group. Group II and III were similar to control group. Both Groups V and VI revealed significant preservation compared to the Cis group. Conclusion Selenium nanoparticles and RJ partially improved testis from Cis-induced toxicity, However, there was no significant difference between both groups.
Collapse
Affiliation(s)
- Christina S. Eisa
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sally S. Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt,Address for correspondence: Dr. Sally S. Mohammed, Faculty of Medicine, Suez Canal University, Circular Road, Ismailia, Egypt. E-mail:
| | - Hoida I. Abd El-Aziz
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lamia M. Farghaly
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Somaya Hosny
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Wang C, Gu Z, Gu X, Tan X, Wang S, Zhang R, Li R, Sun M, Gui C, Li S, Ye Y, Ma J, Su L, Liang C. Nano-selenium attenuates mitochondrial-associated apoptosis via the PI3K/AKT pathway in nickel-induced hepatotoxicity in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2022; 37:101-119. [PMID: 34612572 DOI: 10.1002/tox.23381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/01/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate the protective effects of Nano-Se against nickel (Ni)-induced hepatotoxicity and the potential mechanism. Hence, we constructed in vivo and in vitro models of Ni-induced hepatotoxicity. Sprague-Dawley (SD) rats were exposed to nickel sulfate (NiSO4 , 5.0 mg/kg, i.p.) with or without Nano-Se (0.5, 1, and 2 mg/kg, oral gavage) co-administration for 14 days, and HepG2 cells were exposed to NiSO4 (1500 μM) with or without Nano-Se (20 μM) for 24 h. Nano-Se obviously prevented Ni-induced hepatotoxicity indicated by ameliorating pathological change and decreasing Ni accumulation in rat livers. Ni induced a significant increase in hepatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSH-Px), and malondialdehyde (MDA) level, decreased the glutathione (GSH) content while compared to those in the control group. Nano-Se administration improved the hepatic antioxidant capacity through increase hepatic GSH contents and GSH-Px activity, decrease the activities of SOD, CAT, and MDA level. Nano-Se improved the cell viability, decreased active oxygen (ROS) generation and ameliorated morphological changes of nuclear structures in Ni-treated HepG2 cells. In addition, Nano-Se inhibited the Ni-induced increases of cytochrome c, caspase-9, cleaved caspase-3, increased PI3K and AKT phosphorylation both in vivo and in vitro. Besides, the PI3K inhibitor Y294002 could inhibit the protective effects of Nano-Se on apoptosis. Thus, Nano-Se significantly activates PI3K/AKT signaling to ameliorate apoptosis in Ni-induced hepatotoxicity.
Collapse
Affiliation(s)
- Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhangyu Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinyue Tan
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ruifen Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingkun Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Chunyan Gui
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Biological Monitoring and Restoration of Environmental Pollution in Gansu Province, Lanzhou, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
13
|
Yao Y, Tang M. Advances in endocrine toxicity of nanomaterials and mechanism in hormone secretion disorders. J Appl Toxicol 2021; 42:1098-1120. [PMID: 34935166 DOI: 10.1002/jat.4266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The size of nanoparticles is about 1-100 nm. People are exposed to nanoparticles in environmental pollutants from ancient times to the present. With the maturity of nanotechnology in the past two decades, the production of manufactured nanomaterials is rapidly increasing and they are used in a wide range of aerospace, medicine, food, and industrial applications. However, both natural and manufactured nanomaterials have been proved to pose a threat to diverse organs and systems. The endocrine system is critical to maintaining homeostasis. Endocrine disorders are associated with many diseases, including cancer, reduced fertility, and metabolic diseases. Therefore, we review the literatures dealing with the endocrine toxicity of nanomaterial. This review provides an exhaustive description of toxic effects of several common nanomaterials in the endocrine system; more involved are reproductive endocrinology. Then physicochemical factors that determine the endocrine toxicity of nanomaterials are discussed. Furthermore, oxidative stress, changes in steroid production and metabolic enzymes, organelle disruption, and alterations in signal pathways are introduced as potential mechanisms that may cause changes in hormone levels. Finally, we suggest that a risk assessment of endocrine toxicity based on standard procedures and consideration of endocrine disrupting effects of nanomaterials in the field and its environmental and population effects could be future research directions for endocrine toxicity of nanomaterials.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Yang Y, Zuo Z, Yang Z, Yin H, Wei L, Fang J, Guo H, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y, Liu W. Nickel chloride induces spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112718. [PMID: 34478984 DOI: 10.1016/j.ecoenv.2021.112718] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
As a common environmental pollutant, nickel chloride (NiCl2) poses serious threat to human and animals health. NiCl2 has adverse effects on reproductive function in male, however, the underlying mechanisms are not fully illuminated. In this study, 64 male ICR mice were divided into four groups (8 mice per each period/ group), in which mice orally administrated with 0, 7.5, 15 or 30 mg/kg body weight for 14 or 28 consecutive days, respectively. The results showed that the sperm concentration (12.95%, 29.78% and 37.63% -) and sperm motility (19.79%, 34.88% and 43.10%) were dose-dependent significantly reduced, and the total sperm malformation rates (110.15%, 206.84% and 292.27%) were dose-dependent significantly elevated in the 7.5, 15 and 30 mg/kg NiCl2 treatment groups (vs control at 28 days), respectively (P < 0.05). Meanwhile, NiCl2 also decreased the relative weights of testis and epididymis and caused histopathological lesions of testis and epididymis. Furthermore, serum testosterone levels were significantly decreased after NiCl2 treatment. And the findings showed that NiCl2 down-regulated the expression of LH-R, StAR, P450scc, 3β-HSD, 17β-HSD, ABP and INHβB in the testis, however, the relative genes in the hypothalamus (Kiss-1, GPR54 and GnRH) and pituitary (GnRH-R, LHβ and FSHβ) did not exhibit noticeable change. In summary, NiCl2 induced spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice, and only impaired the genes on the testis of HPT axis.
Collapse
Affiliation(s)
- Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
15
|
Ge J, Liu LL, Cui ZG, Talukder M, Lv MW, Li JY, Li JL. Comparative study on protective effect of different selenium sources against cadmium-induced nephrotoxicity via regulating the transcriptions of selenoproteome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112135. [PMID: 33780782 DOI: 10.1016/j.ecoenv.2021.112135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant, which mainly input to the aquatic environment through discharge of industrial and agricultural waste, can be a threat to human and animal health. Selenium (Se) possesses a beneficial role in protecting animals and ameliorating the toxic effects of Cd. However, the comparative antagonistic effects of different Se sources such as inorganic, organic Se and nano-form Se on Cd toxicity are still under-investigated. Hence, the purpose of this study was to evaluate the comparative of Se sources antagonism on Cd-induced nephrotoxicity via oxidative stress and selenoproteome transcription. In the present study, Cd-diet disturbed in the system balance of 5 trace elements (Zinc (Zn), copper (Cu), Iron (Fe), Se, Cd) and impaired renal function. Se sources, including nano- Se (NS), Se- yeast (SY), sodium selenite (SS) and mixed selenium (MS) significantly recovered the balance of 4 trace elements (Zn, Cu, Cd, Se) and renal impaired indexes (blood urea nitrogen (BUN) and creatinine (CREA)). Histological appearance of Cd-treated kidney indicated renal tubular epithelial vacuoles, particle degeneration and enlarged capsular space. Ultrastructure observation results illustrated that Cd-induced mitochondrial cristae reduction, membrane disappearance, and nuclear deformation. Treatment with Se sources, NS appeared a better impact on improving kidney tissues against the pathological alterations resulting from Cd administration. Meanwhile, NS reflected a significant impact on relieving Cd-induced kidney oxidative damage, and significantly restored the antioxidant defense system of the body. Our findings also showed NS ameliorated the Cd-induced downtrends expression of selenoproteome and selenoprotein synthesis related transcription factors. Overall, NS was the most effective Se source in avoiding of Cd cumulative toxicity, improving antioxidant capacity and regulating of selenoproteome transcriptome and selenoprotein synthesis related transcription factors expression, which contributes to ameliorate Cd-induced nephrotoxicity in chickens. These results demonstrated diet supplement with NS may prove to be an effective approach for alleviating Cd toxicity and minimizing Cd -induced health risk.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Yang J, Ma Z. Research progress on the effects of nickel on hormone secretion in the endocrine axis and on target organs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112034. [PMID: 33581486 DOI: 10.1016/j.ecoenv.2021.112034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Nickel, as one of the most abundant elements in the earth's crust, plays many roles in human reproduction and life. It is an essential trace element for the human body, but can be harmful in excess amounts. Nickel has a significant impact on endocrine hormones in humans and animals, potentially causing abnormal secretions and changing the structure and function of endocrine organs. This article systematically reviews the effects of nickel on hormone secretion and target organs in the endocrine system and identifies areas of insufficient research. METHODS All data in this article were extracted from peer-reviewed articles. The PubMed, SciFinder, Google Scholar, Web of Science, and China National Knowledge Infrastructure databases were searched for relevant articles. Data on nickel's effect on endocrine system hormones and target organs were retrieved, and manually sorted prior to inclusion in this review. RESULTS Nickel acts on the endocrine system and affects the release and regulation of endocrine hormones. Disorders of endocrine hormones may lead to retardation of human growth and mental development, disturbance of water and salt regulation, and even a decline in reproductive ability. Nickel affects the hypothalamus and pituitary gland by regulating organs upstream of the endocrine axis; it can cause abnormal secretion of pituitary hormones, which affects target organs of the endocrine axis, resulting in dysfunction therein and abnormal secretion of related hormones. Nickel also damages target organs, mainly by inducing apoptosis, which triggers oxidative stress, cell autophagy, free radical release, and DNA damage. However, there are few studies on the endocrine axis, and some of the data are contradictory. Nevertheless, it is clear that nickel affects the endocrine system. CONCLUSIONS Nickel can damage organs in the endocrine system, such as the hypothalamus and pituitary. It also affects the secretion of hormones and damages the target organs of these hormones; this can result in endocrine system dysfunction. However, the results have been equivocal and further research is needed.
Collapse
Affiliation(s)
- Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030 Gansu, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030 Gansu, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu, China.
| |
Collapse
|
17
|
Zhang Z, Du Y, Liu T, Wong KH, Chen T. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater Sci 2020; 7:5112-5123. [PMID: 31573569 DOI: 10.1039/c9bm01104h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functionalized selenium nanoparticles (SeNPs) have demonstrated potential for applications in cancer chemotherapy, radio-sensitization, nephroprotection and drug delivery. However, their clinical application requires further systemic safety evaluation. Therefore, in this study, we examine the systematic acute and subchronic toxicity of polysaccharide-protein complex coated SeNPs (PTR-SeNPs). These particles exhibited a low oral acute toxicity (higher LD50) in SPF grade ICR mice and SD rats, and the evaluation of subchronic toxicity demonstrated that the no observed effect level (NOAEL) of the PTR-SeNPs was less than 200 μg Se per kg BW per day, which is about 30 times the tolerable upper intake levels of Se in the human body. In addition, we also found that, under a safe dose (0.75-7.5 mg kg-1), the oral administration of PTR-SeNPs dramatically inhibited the growth of cancer in a tumor-bearing nude mouse model, and the results of the histological analysis indicated that PTR-SeNPs did not significantly damage the major organs, including the liver, spleen, heart, kidneys and lungs. Moreover, the induction of caspase activation and mitochondrial dysfunction was the major anticancer action mechanism of PTR-SeNPs. Taken together, the results of this study provide a simple approach for the facile and large-scale manufacturing of SeNPs with reduced toxicity and enhanced anticancer activity through the regulation of the surface properties of SeNPs. Furthermore, this study generates evidence for the future exploration and translational application of these materials through oral administration in nanomedicine and nutritional sciences.
Collapse
Affiliation(s)
- Zehang Zhang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | |
Collapse
|
18
|
Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, Ming Z, Zeng CJ, Meng Q, Han H, Zhou G. Role of Selenium and Selenoproteins in Male Reproductive Function: A Review of Past and Present Evidences. Antioxidants (Basel) 2019; 8:E268. [PMID: 31382427 PMCID: PMC6719970 DOI: 10.3390/antiox8080268] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium (Se) is an important trace mineral having many essential roles at the cellular and organismal levels in animal and human health. The biological effects of Se are mainly carried out by selenoproteins (encoded by 25 genes in humans and 24 in mice). As an essential component of selenoproteins, Se performs structural and enzymic roles; in the latter context it is well known for its catalytic and antioxidative functions. Studies involving different animal models have added great value to our understanding regarding the potential implications of Se and selenoproteins in mammalian fertility and reproduction. In this review, we highlight the implications of selenoproteins in male fertility and reproduction followed by the characteristic biological functions of Se and selenoproteins associated with overall male reproductive function. It is evident from observations of past studies (both animal and human) that Se is essentially required for spermatogenesis and male fertility, presumably because of its vital role in modulation of antioxidant defense mechanisms and other essential biological pathways and redox sensitive transcription factors. However, bearing in mind the evidences from mainstream literature, it is also advisable to perform more studies focusing on the elucidation of additional roles played by the peculiar and canonical selenoproteins i.e., glutathione peroxidase 4 (GPX4) and selenoprotein P (SELENOP) in the male reproductive functions. Nevertheless, search for the elucidation of additional putative mechanisms potentially modulated by other biologically relevant selenoproteins should also be included in the scope of future studies. However, as for the implication of Se in fertility and reproduction in men, though a few clinical trials explore the effects of Se supplementation on male fertility, due to inconsistencies in the recruitment of subjects and heterogeneity of designs, the comparison of such studies is still complicated and less clear. Therefore, further research focused on the roles of Se and selenoproteins is awaited for validating the evidences at hand and outlining any therapeutic schemes intended for improving male fertility. As such, new dimensions could be added to the subject of male fertility and Se supplementation.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand-67210, Sindh, Pakistan
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand-67210, Sindh, Pakistan
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenzheng Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhang Ming
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Jun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|