1
|
Lyu WY, Cao J, Deng WQ, Huang MY, Guo H, Li T, Lin LG, Lu JJ. Xerophenone H, a naturally-derived proteasome inhibitor, triggers apoptosis and paraptosis in lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156647. [PMID: 40112632 DOI: 10.1016/j.phymed.2025.156647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Polycyclic polyprenylated acylphloroglucinols (PPAPs) characterized by unique chemical architectures, exhibit diverse pharmacological activities. Xerophenone H (XeH) is a PPAP extracted from the plant Garcinia multiflora Champ. ex Benth. (Clusiaceae) with a novel and unique chemical structure. Although in vitro screening has revealed the anti-cancer activity of XeH, whose in vivo effectiveness and mechanistic basis required systematic investigation. METHODS Cytotoxic effects were evaluated through MTT and colony formation assays. A subcutaneous xenograft model was established to assess in vivo anti-cancer efficacy. To elucidate the underlying mechanism of the anti-cancer effect of XeH, RNA-sequencing and western blotting were performed. A proteasome activity assay was conducted to quantify the effect of XeH. Molecular docking and cellular thermal shift assays were conducted to identify the potential molecular target for XeH. RESULTS XeH demonstrated concentration-dependent cytotoxicity in A549 cells (IC₅₀ = 12.16 μM at 48 h). Intratumoral administration (10 mg/kg triweekly) achieved 38.6 % tumor growth inhibition. XeH simultaneously triggered apoptosis and paraptosis in A549 and H460 cells. Mechanistically, XeH promoted the formation of protein aggregates and induced significant endoplasmic reticulum stress in lung cancer cells by directly interacting with PSMB5 and inhibiting proteasome activity. CONCLUSIONS XeH, a novel PPAP, was identified as a novel proteasome inhibitor. It effectively downregulated proteasome activity, and induced both apoptosis and paraptosis in lung cancer cells.
Collapse
Affiliation(s)
- Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jun Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Wei-Qing Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
2
|
Cuan X, Yang X, Wang J, Sheng J, Wang X, Huang Y. Discovery of flavonoid-containing compound Lupalbigenin as anti-NSCLC cancer agents via suppression of EGFR and ERK1/2 pathway. Bioorg Chem 2024; 153:107808. [PMID: 39288634 DOI: 10.1016/j.bioorg.2024.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Epidermal growth factor receptor exon 20 insertions (EGFR Ex20ins) driver mutations in non-small cell lung cancer (NSCLC) is insensitive to EGFR tyrosine kinase inhibitors (TKIs). Therefore, it is necessary to develop more novel strategy to address the limitations of existing therapies targeting EGFR-mutated NSCLC. Lupalbigenin (LB), a flavonoid compound extracted from Derris scandens, has shown preclinical activity in lung cancer. However, the activity of LB in Ex20ins-driven tumors has not yet been elucidated. In this study, a series of stable BaF/3 cell-line that contains a high proportion (>90 %) of EGFR-eGFP Ex20ins were generated using an IL3-deprivation method. Ba/F3 cell models harboring dissimilar Ex20ins were used to characterize the antineoplastic mechanism of LB. Molecular docking confirmed that the LB could effectively bind to key target EGFR. The in vitro anticancer activity of LB was investigated in engineered Ba/F3 cells bearing diverse uncommon EGFR mutations. LB was shown to be more potent in inhibiting the viability of various uncommon EGFR-mutated cell lines. Mechanistic studies disclosed that LB repressed EGFR phosphorylation and downstream survival pathways in Ba/F3 cells expressing EGFR Ex20ins, resulting in caspase activation by activating the intrinsic apoptotic pathway. Further analyses showed that LB significantly induced G0/G1 cell cycle arrest and apoptosis in cells. LB also reduced the protein expression levels of CDK4, CDK6, CDK8, cyclin D1, cyclin A2, and Bcl2 and promoted the expression of cytochrome C, p27, and p53. In summary, we explored the possible potential targets of LB through network pharmacology and verified the target using in vitro experiments. Furthermore, our results demonstrated that LB showed potential anti-Ex20ins cancer activity through suppression of the EGFR and ERK1/2 signaling pathway in Ba/F3 cells bearing two to three amino acid insertion mutations. These findings suggested that LB might be valuable for further investigation as a potential candidate in the treatment of associated diseases.
Collapse
Affiliation(s)
- Xiangdan Cuan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Sanmenxia Polytechnic, Sanmenxia, China
| | - Xingying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinxian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.
| | - Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Science, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
3
|
Joseph AG, Biji M, Murali VP, Sherin DR, Valsan A, Sukumaran VP, Radhakrishnan KV, Maiti KK. A comprehensive apoptotic assessment of niloticin in cervical cancer cells: a tirucallane-type triterpenoid from Aphanamixis polystachya (Wall.) Parker. RSC Med Chem 2024:d4md00318g. [PMID: 39246746 PMCID: PMC11378019 DOI: 10.1039/d4md00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Pharmacologically active small organic molecules derived from natural resources are prominent drug candidates due to their inherent structural diversity. Herein, we explored one such bioactive molecule, niloticin, which is a tirucallane-type triterpenoid isolated from the stem barks of Aphanamixis polystachya (Wall.) Parker. After initial screening with other isolated compounds from the same plant, niloticin demonstrated selective cytotoxicity against cervical cancer cells (HeLa) with an IC50 value of 11.64 μM. Whereas the compound exhibited minimal cytotoxicity in normal epithelial cell line MCF-10A, with an IC50 value of 83.31 μM. Subsequently, in silico molecular docking studies of niloticin based on key apoptotic proteins such as p53, Fas, FasL, and TNF β revealed striking binding affinity, reflecting docking scores of -7.2, -7.1, -6.8, and -7.2. Thus, the binding stability was evaluated through molecular dynamic simulation. In a downstream process, the apoptotic capability of niloticin was effectively validated through in vitro fluorimetric assays, encompassing nuclear fragmentation. Additionally, an insightful approach involving surface-enhanced Raman spectroscopy (SERS) re-establishes the occurrence of DNA cleavage during cellular apoptosis. Furthermore, niloticin was observed to induce apoptosis through both intrinsic and extrinsic pathways. This was evidenced by the upregulation of upstream regulatory molecules such as CD40 and TNF, which facilitate the activation of caspase 8. Concurrently, niloticin-induced p53 activation augmented the expression of proapoptotic proteins Bax and Bcl-2 and downregulation of IAPs, leading to the release of cytochrome C and subsequent activation of caspase 9. Therefore, the reflection of mitochondrial-mediated apoptosis is in good agreement with molecular docking studies. Furthermore, the anti-metastatic potential was evidenced by wound area closure and Ki67 expression patterns. This pivotal in vitro assessment confirms the possibility of niloticin being a potent anti-cancer drug candidate, and to the best of our knowledge, this is the first comprehensive anticancer assessment of niloticin in HeLa cells.
Collapse
Affiliation(s)
- Anuja Gracy Joseph
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mohanan Biji
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vishnu Priya Murali
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
| | - Daisy R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology Thiruvananthapuram-695317 India
| | - Alisha Valsan
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vimalkumar P Sukumaran
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kokkuvayil Vasu Radhakrishnan
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
| | - Kaustabh Kumar Maiti
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
| |
Collapse
|
4
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Bouron A. Cellular neurobiology of hyperforin. Phytother Res 2024; 38:636-645. [PMID: 37963759 DOI: 10.1002/ptr.8063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/16/2023]
Abstract
Hyperforin is a phloroglucinol derivative isolated from the medicinal plant Hypericum perforatum (St John's wort, SJW). This lipophilic biomolecule displays antibacterial, pro-apoptotic, antiproliferative, and anti-inflammatory activities. In addition, in vitro and in vivo data showed that hyperforin is a promising molecule with potential applications in neurology and psychiatry. For instance, hyperforin possesses antidepressant properties, impairs the uptake of neurotransmitters, and stimulates the brain derived neurotrophic factor (BDNF)/TrkB neurotrophic signaling pathway, the adult hippocampal neurogenesis, and the brain homeostasis of zinc. In fact, hyperforin is a multi-target biomolecule with a complex neuropharmacological profile. However, one prominent pharmacological feature of hyperforin is its ability to influence the homeostasis of cations such as Ca2+ , Na+ , Zn2+ , and H+ . So far, the pathophysiological relevance of these actions is currently unknown. The main objective of the present work is to provide an overview of the cellular neurobiology of hyperforin, with a special focus on its effects on neuronal membranes and the movement of cations.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, Grenoble, France
| |
Collapse
|
6
|
Simón L, Arazo-Rusindo M, Quest AFG, Mariotti-Celis MS. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants (Basel) 2023; 12:1734. [PMID: 37760037 PMCID: PMC10525198 DOI: 10.3390/antiox12091734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Migdalia Arazo-Rusindo
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | | |
Collapse
|
7
|
Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988300 DOI: 10.1002/tox.23797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM) is classified as a stage-IV glioma. Unfortunately, there are currently no curative treatments for GBM. Poly(rC)-binding protein 1 (PCBP1) is a cytosolic iron chaperone with diverse functions. PCBP1 is also known to regulate autophagy, but the role of PCBP1 in ferroptosis, iron-dependent cell death pathway, remains unrevealed in GBM cells. Here, we investigated the effects of borax, a boron compound, on the ferroptosis signaling pathway mediated by PCBP1 and autophagy. The study analyzed cell viability, proliferation, and cell cycle on U87-MG and HMC3 cells to investigate the effects of borax. After determining the cytotoxic concentrations of borax, morphological analyzes and measurement of PCBP1, Beclin1, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase 4 (GPx4) and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were performed. Finally, expression levels of PCBP1, Beclin1, GPx4 and ACSL4, and caspase-3/7 activity were determined. We found that borax reduced U87-MG cell viability in a concentration- and time-dependent manner. Additionally, borax altered cell proliferation and remarkably reduced S phase in the U87-MG cells and exhibited selectivity by having an opposite effect on normal cells (HMC3). According to DAPI staining, borax caused nuclear deficits in U87-MG cells. The result showed that borax in U87-MG cells induced reduction of the PCBP1, GSH, and GPx4 and enhancement of Beclin1, MDA, and ACSL4. Furthermore, borax triggered apoptosis by activating caspase 3/7 in U87-MG cells. Our study indicated that the borax has potential as an anticancer treatment for GBM via regulating PCBP1/Beclin1/GPx4/ACSL4 signaling pathways.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Davran
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Cengiz Tuncer
- Department of Neurosurgery, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|
8
|
Yang HL, Chang YH, Pandey S, Bhat AA, Vadivalagan C, Lin KY, Hseu YC. Antrodia camphorata and coenzyme Q 0 , a novel quinone derivative of Antrodia camphorata, impede HIF-1α and epithelial-mesenchymal transition/metastasis in human glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947447 DOI: 10.1002/tox.23785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 μg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and β-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 μM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/β-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and β-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Yao-Hsien Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Asif Ali Bhat
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
9
|
Cardile A, Zanrè V, Campagnari R, Asson F, Addo SS, Orlandi E, Menegazzi M. Hyperforin Elicits Cytostatic/Cytotoxic Activity in Human Melanoma Cell Lines, Inhibiting Pro-Survival NF-κB, STAT3, AP1 Transcription Factors and the Expression of Functional Proteins Involved in Mitochondrial and Cytosolic Metabolism. Int J Mol Sci 2023; 24:ijms24021263. [PMID: 36674794 PMCID: PMC9860844 DOI: 10.3390/ijms24021263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Hyperforin (HPF), the main component responsible for the antidepressant action of Hypericum perforatum, displays additional beneficial properties including anti-inflammatory, antimicrobic, and antitumor activities. Among its antitumor effects, HPF activity on melanoma is poorly documented. Melanoma, especially BRAF-mutated melanoma, is still a high-mortality tumor type and the currently available therapies do not provide solutions. We investigated HPF's antimelanoma effectiveness in A375, FO1 and SK-Mel-28 human BRAF-mutated cell lines. Cell viability assays documented that all melanoma cells were affected by low HPF concentrations (EC50% 2-4 µM) in a time-dependent manner. A Br-deoxy-uridine incorporation assay attested a significant reduction of cell proliferation accompanied by decreased expression of cyclin D1 and A2, CDK4 and of the Rb protein phosphorylation, as assessed by immunoblots. In addition, the expression of P21/waf1 and the activated form of P53 were increased in A375 and SK-Mel-28 cells. Furthermore, HPF exerts cytotoxic effects. Apoptosis is induced 24 h after HPF administration, documented by an increase of cleaved-PARP1 and a decrease of both Bcl2 and Bcl-xL expression levels. Autophagy is induced, attested by an augmented LC3B expression and augmentation of the activated form of AMPK. Moreover, HPF lowers GPX4 enzyme expression, suggesting ferroptosis induction. HPF has been reported to activate the TRPC6 Ca++ channel and/or Ca++ and Zn++ release from mitochondria stores, increasing cytosolic Ca++ and Zn++ concentrations. Our data highlighted that HPF affects many cell-signaling pathways, including signaling induced by Ca++, such as FRA1, pcJun and pCREB, the expression or activity of which are increased shortly after treatment. However, the blockage of the TRPC6 Ca++ channel or the use of Ca++ and Zn++ chelators do not hinder HPF cytostatic/cytotoxic activity, suggesting that damages induced in melanoma cells may pass through other pathways. Remarkably, 24 h after HPF treatment, the expression of activated forms of the transcription factors NF-κB P65 subunit and STAT3 are significantly lowered. Several cytosolic (PGM2, LDHA and pPKM2) and mitochondrial (UQCRC1, COX4 and ATP5B) enzymes are downregulated by HPF treatment, suggesting a generalized reduction of vital functions in melanoma cells. In line with these results is the recognized ability of HPF to affect mitochondrial membrane potential by acting as a protonophore. Finally, HPF can hinder both melanoma cell migration and colony formation in soft agar. In conclusion, we provide evidence of the pleiotropic antitumor effects induced by HPF in melanoma cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Rachele Campagnari
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Francesca Asson
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Solomon Saforo Addo
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Elisa Orlandi
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
10
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
11
|
Wang W, Chen Y, Kuo C, Tsai J, Hsu F, Chung J, Pan P. DNA
damage and
NF‐κB
inactivation implicate glycyrrhizic acid‐induced
G
1
phase arrest in hepatocellular carcinoma cells. J Food Biochem 2022; 46:e14128. [DOI: 10.1111/jfbc.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Wei‐Shu Wang
- Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yu‐Shan Chen
- Department of Radiation Oncology Show Chwan Memorial Hospital Changhua Taiwan
| | - Chen‐Yu Kuo
- Division of Gastroenterology, Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
| | - Jai‐Jen Tsai
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Division of Gastroenterology, Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
- Department of Nursing Cardinal Tien Junior College of Healthcare and Management New Taipei City Taiwan
| | - Fei‐Ting Hsu
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Jing‐Gung Chung
- Department of Biological Science and Technology China Medical University Taichung Taiwan
- Department of Medical Laboratory and Biotechnology Asia University Taichung Taiwan
| | - Po‐Jung Pan
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Physical Medicine and Rehabilitation National Yang Ming Chiao Tung University Hospital Yilan Taiwan
| |
Collapse
|
12
|
Pan J, Sheng S, Ye L, Xu X, Ma Y, Feng X, Qiu L, Fan Z, Wang Y, Xia X, Zheng JC. Extracellular vesicles derived from glioblastoma promote proliferation and migration of neural progenitor cells via PI3K-Akt pathway. Cell Commun Signal 2022; 20:7. [PMID: 35022057 PMCID: PMC8756733 DOI: 10.1186/s12964-021-00760-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glioblastomas are lethal brain tumors under the current combinatorial therapeutic strategy that includes surgery, chemo- and radio-therapies. Extensive changes in the tumor microenvironment is a key reason for resistance to chemo- or radio-therapy and frequent tumor recurrences. Understanding the tumor-nontumor cell interaction in TME is critical for developing new therapy. Glioblastomas are known to recruit normal cells in their environs to sustain growth and encroachment into other regions. Neural progenitor cells (NPCs) have been noted to migrate towards the site of glioblastomas, however, the detailed mechanisms underlying glioblastoma-mediated NPCs' alteration remain unkown. METHODS We collected EVs in the culture medium of three classic glioblastoma cell lines, U87 and A172 (male cell lines), and LN229 (female cell line). U87, A172, and LN229 were co-cultured with their corresponding EVs, respectively. Mouse NPCs (mNPCs) were co-cultured with glioblastoma-derived EVs. The proliferation and migration of tumor cells and mNPCs after EVs treatment were examined. Proteomic analysis and western blotting were utilized to identify the underlying mechanisms of glioblastoma-derived EVs-induced alterations in mNPCs. RESULTS We first show that glioblastoma cell lines U87-, A172-, and LN229-derived EVs were essential for glioblastoma cell prolifeartion and migration. We then demonstrated that glioblastoma-derived EVs dramatically promoted NPC proliferation and migration. Mechanistic studies identify that glioblastoma-derived EVs achieve their functions via activating PI3K-Akt-mTOR pathway in mNPCs. Inhibiting PI3K-Akt pathway reversed the elevated prolfieration and migration of glioblastoma-derived EVs-treated mNPCs. CONCLUSION Our findings demonstrate that EVs play a key role in intercellular communication in tumor microenvironment. Inhibition of the tumorgenic EVs-mediated PI3K-Akt-mTOR pathway activation might be a novel strategy to shed light on glioblastoma therapy. Video Abstract.
Collapse
Affiliation(s)
- Jiabin Pan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Shiyang Sheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Ling Ye
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xuanran Feng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Lisha Qiu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhaohuan Fan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Wu CH, Hsu FT, Chao TL, Lee YH, Kuo YC. Revealing the suppressive role of protein kinase C delta and p38 mitogen-activated protein kinase (MAPK)/NF-κB axis associates with lenvatinib-inhibited progression in hepatocellular carcinoma in vitro and in vivo. Biomed Pharmacother 2021; 145:112437. [PMID: 34864311 DOI: 10.1016/j.biopha.2021.112437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB), an oncogenic transcription factor, modulates tumor formation and progression by inducing the expression of oncogenes involved in proliferation, survival, angiogenesis, and metastasis. Oral multikinase inhibitors, such as sorafenib, regorafenib, and lenvatinib have been used for the treatment of hepatocellular carcinoma (HCC). Both sorafenib and regorafenib were shown to abolish the NF-κB-mediated progression of HCC. However, the effect of lenvatinib on NF-κB-mediated progression of HCC is ambiguous. Therefore, the primary purpose of the present study was to evaluate the inhibitory effect of lenvatinib and its inhibitory mechanism on the NF-κB-mediated progression of HCC in vitro and in vivo. Here, we used two HCC cell lines to identify the cytotoxicity, apoptosis and metastasis effect of lenvatinib. We also applied a Hep3B-bearing animal model to investigate the therapeutic efficacy of lenvatinib on in vivo model. An NF-κB translocation assay, NF-κB reporter gene assay, a Western blotting assay and immunohistochemistry staining were used to investigate the underlying mechanism by which lenvatinib acts on HCC. In this study, we demonstrated that lenvatinib induced extrinsic/intrinsic apoptosis and suppressed the metastasis of HCC both in vitro and in vivo. Lenvatinib may also suppress NF-κB translocation and activation. We also found both protein kinase C delta (PKC-δ) and p38 mitogen-activated protein kinase (MAPK) inactivation participated in lenvatinib-reduced NF-κB signaling. In conclusion, this study reveals that the suppression of PKC-δ, and the p38 MAPK/NF-κB axis is associated with the lenvatinib-inhibited progression of HCC in vitro and in vivo.
Collapse
Affiliation(s)
- Ching-Hsuan Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan, ROC
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, ROC.
| | - Tsu-Lan Chao
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, ROC
| | - Yuan-Hao Lee
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Cheng Kuo
- School of Medicine, College of Medicine, China Medical University, Taichung, ROC; Department of Radiation Oncology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, ROC.
| |
Collapse
|
14
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
15
|
Menegazzi M, Masiello P, Novelli M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants (Basel) 2020; 10:antiox10010018. [PMID: 33379141 PMCID: PMC7824709 DOI: 10.3390/antiox10010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we review the mechanisms of the antitumor effects of Hypericum perforatum L. (St. John's wort, SJW) and its main active component hyperforin (HPF). SJW extract is commonly employed as antidepressant due to its ability to inhibit monoamine neurotransmitters re-uptake. Moreover, further biological properties make this vegetal extract very suitable for both prevention and treatment of several diseases, including cancer. Regular use of SJW reduces colorectal cancer risk in humans and prevents genotoxic effects of carcinogens in animal models. In established cancer, SJW and HPF can still exert therapeutic effects by their ability to downregulate inflammatory mediators and inhibit pro-survival kinases, angiogenic factors and extracellular matrix proteases, thereby counteracting tumor growth and spread. Remarkably, the mechanisms of action of SJW and HPF include their ability to decrease ROS production and restore pH imbalance in tumor cells. The SJW component HPF, due to its high lipophilicity and mild acidity, accumulates in membranes and acts as a protonophore that hinders inner mitochondrial membrane hyperpolarization, inhibiting mitochondrial ROS generation and consequently tumor cell proliferation. At the plasma membrane level, HPF prevents cytosol alkalization and extracellular acidification by allowing protons to re-enter the cells. These effects can revert or at least attenuate cancer cell phenotype, contributing to hamper proliferation, neo-angiogenesis and metastatic dissemination. Furthermore, several studies report that in tumor cells SJW and HPF, mainly at high concentrations, induce the mitochondrial apoptosis pathway, likely by collapsing the mitochondrial membrane potential. Based on these mechanisms, we highlight the SJW/HPF remarkable potentiality in cancer prevention and treatment.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7168
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| |
Collapse
|