1
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Mitophagy suppression by miquelianin-rich lotus leaf extract induces 'beiging' of white fat via AMPK/DRP1-PINK1/PARKIN signaling axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2597-2609. [PMID: 37991930 DOI: 10.1002/jsfa.13143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Lotus (Nelumbo nucifera) leaf has been described to have anti-obesity activity, but the role of white fat 'browning' or 'beiging' in its beneficial metabolic actions remains unclear. Here, 3T3-L1 cells and high-fat-diet (HFD)-fed mice were used to evaluate the effects of miquelianin-rich lotus leaf extract (LLE) on white-to-beige fat conversion and its regulatory mechanisms. RESULTS Treatment with LLE increased mitochondrial abundance, mitochondrial membrane potential and NAD+ /NADH ratio in 3T3-L1 cells, suggesting its potential in promoting mitochondrial activity. qPCR and/or western blotting analysis confirmed that LLE induced the expression of beige fat-enriched gene signatures (e.g. Sirt1, Cidea, Dio2, Prdm16, Ucp1, Cd40, Cd137, Cited1) and mitochondrial biogenesis-related markers (e.g. Nrf1, Cox2, Cox7a, Tfam) in 3T3-L1 cells and inguinal white adipose tissue of HFD-fed mice. Furthermore, we found that LLE treatment inhibited mitochondrial fission protein DRP1 and blocked mitophagy markers such as PINK1, PARKIN, BECLIN1 and LC-3B. Chemical inhibition experiments revealed that AMPK/DRP1 signaling was required for LLE-induced beige fat formation via suppressing PINK1/PARKIN/mitophagy. CONCLUSION Our data reveal a novel mechanism underlying the anti-obesity effect of LLE, namely the induction of white fat beiging via AMPK/DRP1/mitophagy signaling. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Liu J, Liu C, Chen H, Cen H, Yang H, Liu P, Liu F, Ma L, Chen Q, Wang L. Tongguan capsule for treating myocardial ischemia-reperfusion injury: integrating network pharmacology and mechanism study. PHARMACEUTICAL BIOLOGY 2023; 61:437-448. [PMID: 36789620 PMCID: PMC9937005 DOI: 10.1080/13880209.2023.2175877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/11/2022] [Accepted: 01/29/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Although Tongguan capsule (TGC) is used in the treatment of coronary atherosclerotic disease, the exact mechanism remains unclear. OBJECTIVE Network pharmacology and experimental validation were applied to examine the mechanism of TGC for treating myocardial ischemia-reperfusion injury (MIRI). MATERIALS AND METHODS The components and candidate targets were searched based on various databases such as TCMSP, TCMID, BATMAN-TCM. The binding ability was determined by molecular docking. The ischemia-reperfusion (I/R) model was constructed by ligating the left anterior descending (LAD) coronary artery. APOE-/- mice were divided into three groups (n = 6): Sham group, I/R group, and TGC group (1 g/kg/d). To further verification, HCAEC cells were subjected to hypoxia-reoxygenation (H/R) to establish in vitro model. RESULTS The compounds, such as quercetin, luteolin, tanshinone IIA, kaempferol and bifendate, were obtained after screening. The affinity values of the components with GSK-3β, mTOR, Beclin-1, and LC3 were all <-5 kcal/mol. In vivo, TGC improved LVEF and FS, reducing infarct size. In vitro, Hoechst 33258 staining result showed TGC inhibited apoptosis. Compare with the H/R model, TGC treatment increased the levels of GSK-3β, LC3, and Beclin1, while decreasing the expression of mTOR and p62 (p < 0.05). DISCUSSION AND CONCLUSION The findings revealed that TGC exerted a cardioprotective effect by up regulating autophagy-related proteins through the mTOR pathway, which may be a therapeutic option for MIRI. However, there are still some limitations in this research. It is necessary to search more databases to obtain information and further demonstrated through randomized controlled trials for generalization.
Collapse
Affiliation(s)
- Jiantao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hailong Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijian Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuling Ma
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quanfu Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
De Stefano A, Marvi MV, Fazio A, McCubrey JA, Suh PG, Ratti S, Ramazzotti G, Manzoli L, Cocco L, Follo MY. Advances in MDS/AML and inositide signalling. Adv Biol Regul 2023; 87:100955. [PMID: 36706610 DOI: 10.1016/j.jbior.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Aberrant signaling pathways regulating proliferation and differentiation of hematopoietic stem cells (HSCs) can contribute to disease pathogenesis and neoplastic growth. Phosphoinositides (PIs) are inositol phospholipids that are implicated in the regulation of critical signaling pathways: aberrant regulation of Phospholipase C (PLC) beta1, PLCgamma1 and the PI3K/Akt/mTOR pathway play essential roles in the pathogenesis of Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).
Collapse
Affiliation(s)
- Alessia De Stefano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
5
|
Liu H, Zhou W, Guo L, Zhang H, Guan L, Yan X, Zhai Y, Qiao Y, Wang Z, Zhao J, Lyu K, Li P, Wang H, Peng L. Quercetin protects against palmitate-induced pancreatic β-cell apoptosis by restoring lysosomal function and autophagic flux. J Nutr Biochem 2022; 107:109060. [DOI: 10.1016/j.jnutbio.2022.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
6
|
Bhattacharyya S, Law S. Environmental pollutant N-N'ethylnitrosourea-induced leukemic NLRP3 inflammasome activation and its amelioration by Eclipta prostrata and its active compound wedelolactone. ENVIRONMENTAL TOXICOLOGY 2022; 37:322-334. [PMID: 34726823 DOI: 10.1002/tox.23400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure of N-nitroso compounds (NOCs) from various sources like tobacco smoke, pesticides, smoked meat, and rubber manufacturing industries has been an alarming cause of carcinogenesis. Neonatal exposure to the carcinogenic N-N'ethylnitrosourea (ENU), a NOC has been established to cause leukemogenesis. Our world is constantly battling against cancer with consistent investigations of new anti-cancer therapeutics. Plant derived compounds have grasped worldwide attention of researchers for their promising anti-cancer potentials. Eclipta prostrata is one such ayurvedic herb, renowned for its anti-inflammatory properties. Currently, it has been explored in various cancer cell lines to establish its anti-cancer effect, but rarely in in-vivo cancer models. Wedelolactone (WDL), the major coumestan of E. prostrata is recognized as an inhibitor of IKK, a master regulator of the NF-kB inflammatory pathway. As persistent inflammation and activated inflammasome contribute to leukemogenesis, we tried to observe anti-leukemogenic efficacy of E. prostrata and its active compound WDL on the marrow cells of ENU induced experimental leukemic mice. Treatment groups were administered an oral gavage at a dose of 1200 mg/kg and 50 mg/kg b.w of crude extract and WDL respectively for 4 weeks. Various parameters like hemogram, survivability, cytological and histological investigations, migration assay, cell culture, flowcytometry and confocal microscopy were taken into consideration pre- and post-treatment. Interestingly, the plant concoction portrayed maximum effects in comparison to WDL alone. The study suggests E. prostrata and WDL as vital complementary adjuncts for anti-inflammasome mechanism in ENU-induced leukemia.
Collapse
Affiliation(s)
- Subhashree Bhattacharyya
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Ergosterol depletion under bifonazole treatment induces cell membrane damage and triggers a ROS-mediated mitochondrial apoptosis in Penicillium expansum. Fungal Biol 2021; 126:1-10. [PMID: 34930554 DOI: 10.1016/j.funbio.2021.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
Penicillium expansum is the causal agent of blue mold in harvested fruits and vegetables during storage and distribution, causing serious economic loss. In this study we seek the action modes of bifonazole against this pathogen. Bifonazole exhibited strong antifungal activity against P. expansum by inhibiting ergosterol synthesis. The ergosterol depletion caused damage to the cell structure and especially cell membrane integrity as observed by SEM and TEM. With increased unsaturated fatty acids contents, the cell membrane viscosity decreases and can no longer effectively maintain the cytoplasm, which ultimately decreases extracellular conductivity, changes intracellular pH and ion homeostasis. Exposure of hyphal cells to bifonazole shows that mitochondrial respiration is inhibited and reactive oxygen species (ROS) levels-including H2O2 and malondialdehyde (MDA) - are significantly increased. The functional impairment of mitochondria and cell membrane eventually cause cell death through intrinsic apoptosis and necroptosis.
Collapse
|
8
|
Ikari S, Yang Q, Lu SL, Liu Y, Hao F, Tong G, Lu S, Noda T. Quercetin in Tartary Buckwheat Induces Autophagy against Protein Aggregations. Antioxidants (Basel) 2021; 10:antiox10081217. [PMID: 34439466 PMCID: PMC8388858 DOI: 10.3390/antiox10081217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 01/18/2023] Open
Abstract
Tartary buckwheat is used as an ingredient in flour and tea, as well as in traditional Chinese medicine for its antioxidant effects. Here, we found that an ethanol extract of tartary buckwheat (TBE) potently induced autophagy flux in HeLa cells by suppressing mTORC1 activity, as revealed by dephosphorylation of the mTORC1 substrates Ulk1, S6K, and 4EBP, as well as by the nuclear translocation of transcriptional factor EB. In addition to non-selective bulk autophagy, TBE also induced aggrephagy, which is defined as autophagy against aggregated proteins. Quercetin is a flavonol found at high levels in TBE. We showed that quercetin induced both non-selective bulk autophagy and aggrephagy. These effects were also observed in Huh-7 cells derived from hepatocytes. Thus, aggrephagy induction by TBE and quercetin may relieve alcoholic hepatitis, which is closely linked to the accumulation of protein aggregations called Mallory–Denk bodies.
Collapse
Affiliation(s)
- Sumiko Ikari
- Center for Frontier of Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 5650871, Japan; (S.I.); (S.-L.L.); (F.H.)
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Daye 435100, China; (Q.Y.); (Y.L.)
| | - Shiou-Ling Lu
- Center for Frontier of Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 5650871, Japan; (S.I.); (S.-L.L.); (F.H.)
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Daye 435100, China; (Q.Y.); (Y.L.)
| | - Feike Hao
- Center for Frontier of Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 5650871, Japan; (S.I.); (S.-L.L.); (F.H.)
| | - Guoqiang Tong
- Jing Brand Company, Ltd., Daye 435100, China; (G.T.); (S.L.)
| | - Shiguang Lu
- Jing Brand Company, Ltd., Daye 435100, China; (G.T.); (S.L.)
| | - Takeshi Noda
- Center for Frontier of Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 5650871, Japan; (S.I.); (S.-L.L.); (F.H.)
- Correspondence: ; Tel.: +81-6-6879-2976
| |
Collapse
|