1
|
Liu Y, Fan H, Kang X, Hao Y, Wang N, Zheng H, Li Y, Kang S. A rare germline BMP15 missense mutation causes hereditary ovarian immature teratoma in human. Proc Natl Acad Sci U S A 2024; 121:e2310409121. [PMID: 38427603 DOI: 10.1073/pnas.2310409121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Ovarian immature teratomas (OITs) are malignant tumors originating from the ovarian germ cells that mainly occur during the first 30 y of a female's life. Early age of onset strongly suggests the presence of susceptibility gene mutations for the disease yet to be discovered. Whole exon sequencing was used to screen pathogenic mutations from pedigrees with OITs. A rare missense germline mutation (C262T) in the first exon of the BMP15 gene was identified. In silico calculation suggested that the mutation could impair the formation of mature peptides. In vitro experiments on cell lines confirmed that the mutation caused an 84.7% reduction in the secretion of mature BMP15. Clinical samples from OIT patients also showed a similar pattern of decrease in the BMP15 expression. In the transgenic mouse model, the spontaneous parthenogenetic activation significantly increased in oocytes carrying the T allele. Remarkably, a mouse carrying the T allele developed the phenotype of OIT. Oocyte-specific RNA sequencing revealed that abnormal activation of the H-Ras/MAPK pathway might contribute to the development of OIT. BMP15 was identified as a pathogenic gene for OIT which improved our understanding of the etiology of OIT and provided a potential biomarker for genetic screening of this disorder.
Collapse
Affiliation(s)
- Yakun Liu
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Hongwei Fan
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Xi Kang
- Department of Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Yuntao Hao
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Na Wang
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Hui Zheng
- Nanjing Personal Oncology Biotechnology Co., Ltd., Nanjing, Jiangsu 211103, China
| | - Yan Li
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
2
|
Wang Y, Xie L, Liu F, Ding D, Wei W, Han F. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117299. [PMID: 37816474 DOI: 10.1016/j.jep.2023.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a "silent killer" that threatens women's lives and health, ovarian cancer (OC) has the clinical characteristics of being difficult to detect, difficult to treat, and high recurrence. Traditional Chinese medicine (TCM) can be utilized as a long-term complementary and alternative therapy since it has shown benefits in alleviating clinical symptoms of OC, decreasing toxic side effects of radiation and chemotherapy, as well as enhancing patients' quality of life. AIM OF THE REVIEW This paper reviews how TCM contributes to the apoptosis of OC cells through signaling pathways, including active constituents, extracts, and herbal formulas, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in OC. METHODS The search was conducted from scientific databases PubMed, Embase, Web of Science, CNKI, Wanfang, VIP, and SinoMed databases aiming to elucidate the apoptosis signaling pathways in OC cells by TCM. The articles were searched by the keywords "ovarian cancer", "apoptosis", "signaling pathway", "traditional Chinese medicine", "Chinese herbal monomer", "Chinese herbal extract", and "herbal formula". The search was conducted from January 2013 to June 2023. A total of 97 potentially relevant articles were included, including 93 articles on Chinese medicine active constituents or extracts and 4 articles on Chinese herbal compound prescriptions. RESULTS TCM can induce apoptosis in OC cells by regulating signaling pathways with obvious advantages, including STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, Nrf2, HIF-1α, Fas/Fas L signaling pathway, etc. CONCLUSION: Chinese medicine can induce apoptosis in OC cells through multiple pathways, targets, and routes. TCM has special advantages for treating OC, providing more reasonable evidence for the research and development of new apoptosis inducers.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Liangzhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Danni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Janeczko M, Kochanowicz E, Górka K, Skrzypek T. Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 2024; 12:e0365223. [PMID: 38289929 PMCID: PMC10913734 DOI: 10.1128/spectrum.03652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Górka
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Chatterjee S, Jain CK, Saha T, Roychoudhury S, Majumder HK, Das S. Utilizing coordination chemistry through formation of a Cu II-quinalizarin complex to manipulate cell biology: An in vitro, in silico approach. J Inorg Biochem 2023; 249:112369. [PMID: 37776829 DOI: 10.1016/j.jinorgbio.2023.112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India; Department of Chemistry, Vijaygarh Jyotish Ray College, Kolkata 700 032, India
| | - Chetan Kumar Jain
- Cancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700 032, India; Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Tanmoy Saha
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India
| | - Susanta Roychoudhury
- Cancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
5
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5‑year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non‑canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p‑STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl‑xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non‑coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non‑coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
6
|
Qin X, Chen X, Guo L, Liu J, Yang Y, Zeng Y, Li C, Liu W, Ma W. Hinokiflavone induces apoptosis, cell cycle arrest and autophagy in chronic myeloid leukemia cells through MAPK/NF-κB signaling pathway. BMC Complement Med Ther 2022; 22:100. [PMID: 35387632 PMCID: PMC8988348 DOI: 10.1186/s12906-022-03580-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is a myeloproliferative tumor originating from hematopoietic stem cells, and resistance to tyrosine kinase inhibitors (TKI) has become a major cause of treatment failure. Alternative drug therapy is one of the important ways to overcome TKI resistance. Hinokiflavone (HF) is a C-O-C type biflavonoid with low toxicity and antitumor activity. This study investigated the antitumor effect and possible mechanisms of HF in CML cells. Methods Cell viability was measured by CCK-8 assay. Cell apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blotting was used to assess protein expression levels. Results Our results showed that HF significantly inhibited the viability of K562 cells in a concentration- and time-dependent manner and induced G2/M phase arrest by up-regulating p21 and down-regulating Cdc2 protein. Furthermore, HF induced caspase-dependent apoptosis by activating JNK/p38 MAPK signaling pathway and inhibiting NF-κB activity. In addition, HF induced autophagy by increasing LC3-II expression and p62 degradation. Pretreatment with CQ, a late autophagy inhibitor, significantly increased the levels of LC3-II and p62 proteins and promoted cell survival. Conclusion HF shows a good anti-leukemia effect and is expected to become a potential therapeutic drug for CML. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03580-7.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.,Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Xi Chen
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Ling Guo
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Jing Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - You Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.,Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Yan Zeng
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Cheng Li
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|