1
|
Chiu CH, Ramesh S, Liao PH, Kuo WW, Chen MC, Kuo CH, Li CC, Wang TF, Lin YM, Lin YJ, Huang CY. Phosphorylation of Bcl-2 by JNK confers gemcitabine resistance in lung cancer cells by reducing autophagy-mediated cell death. ENVIRONMENTAL TOXICOLOGY 2023; 38:2121-2131. [PMID: 37219008 DOI: 10.1002/tox.23836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The most common cancer-related death in the world is non-small cell lung cancer (NSCLC). Gemcitabine (GEM) is a common and effective first-line chemotherapeutic drug for the treatment of NSCLC. However, the long-term use of chemotherapeutic drugs in patients usually induces cancer cell drug resistance, leading to poor survival, and prognosis. In this study, to observe and explore the key targets and potential mechanisms of NSCLC resistance to GEM, we first cultured lung cancer CL1-0 cells in a GEM-containing medium to induce CL1-0 cells to develop GEM resistance. Next, we compared protein expression between the parental and GEM-R CL1-0 cell groups. We observed significantly lower expression of autophagy-related proteins in GEM-R CL1-0 cells than in parental CL1-0 cells, indicating that autophagy is associated with GEM resistance in CL1-0 cells. Furthermore, a series of autophagy experiments revealed that GEM-R CL1-0 cells had significantly reduced GEM-induced c-Jun N-terminal kinase phosphorylation, which further affected the phosphorylation of Bcl-2, thereby reducing the dissociation of Bcl-2 and Beclin-1 and ultimately reducing the generation of GEM-induced autophagy-dependent cell death. Our findings suggest that altering the expression of autophagy is a promising therapeutic option for drug-resistant lung cancer.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Meng J, Zhang C, Zhu N, Zhang C, Liu M, Han Z, Li Y. EPN3 plays oncogenic role in non-small cell lung cancer by activating the JAK1/2-STAT3 pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186036 DOI: 10.1002/tox.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The effect of Epsin 3 (EPN3) on non-small cell lung cancer (NSCLC) has not yet been clearly elucidated. This study identified the exact function of EPN3 on NSCLC progression. EPN3 expression in NSCLC patients were analyzed based on the Cancer Genome Atlas database. Kaplan-Meier analysis was implemented to research the effect of EPN3 on patients' survival. EPN3 expression in clinical tissues of 62 NSCLC cases was monitored by real-time quantitative reverse transcription polymerase chain reaction, immunohistochemistry and Western blot. A549 and H1299 cells were transfected with EPN3 shRNA and treated by RO8191 (20 μM). Proliferation was researched by cell counting kit-8 and 5-ethnyl-2 deoxyuridine assays. Apoptosis was monitored by flow cytometry. Migration and invasion was assessed by Transwell experiment. EPN3 effect on A549 cell in vivo growth was researched using nude mice. RO8191 (200 μg) was intratumoral injected into mice. Immunohistochemistry and Western blot was implemented to monitor protein expression in cells and xenograft tumor tissues. EPN3 was abnormally up-regulated in NSCLC patients and cells, indicating a lower overall survival. Loss of EPN3 weakened proliferation, migration and invasion, induced apoptosis, and repressed epithelial-mesenchymal transition in NSCLC cells. Loss of EPN3 inactivated the JAK1/2-STAT3 pathway in NSCLC cells. RO8191 treatment reversed the inhibition of EPN3 knockdown on the malignant phenotype of NSCLC cells. RO8191 intratumoral injection reversed the suppression of EPN3 silencing on NSCLC cell in vivo growth. EPN3 acted as an oncogene in NSCLC via activating the JAK1/2-STAT3 pathway. EPN3 may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Jiguang Meng
- Department of Pulmonary and Critical Care Medicine, Fourth Medical Center of PLA General Hospital, Beijing, China
- Naval Clinical College, Anhui Medical University, Hefei, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Nengyang Zhu
- Naval Clinical College, Anhui Medical University, Hefei, China
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Caiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Meng Liu
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yongqun Li
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Wu Q, Zhang H, You S, Xu Z, Liu X, Chen X, Zhang W, Ye J, Li P, Zhou X. NEDD4L inhibits migration, invasion, cisplatin resistance and promotes apoptosis of bladder cancer cells by inactivating the p62/Keap1/Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087754 DOI: 10.1002/tox.23796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE This study identified the function of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) on bladder cancer (BLCA). METHODS NEDD4L expression in BLCA patients was scrutinized. The function of NEDD4L on the viability, apoptosis, migration and invasion of BLCA cells was evaluated by cell counting kit-8, flow cytometry and Transwell assays. The effect of NEDD4L on the cisplatin (DDP) resistance of the DDP-resistant BLCA cells was explored. The influence of NEDD4L on the p62/Keap1/Nrf2 pathway activity in BLCA cells was tested by Western blot. Rescue experiments were implemented to verify whether NEDD4L regulated BLCA cell malignant behavior by mediating the Keap1/Nrf2 pathway activity via p62. The effect of NEDD4L on the growth and the p62/Keap1/Nrf2 pathway activity in vivo was researched in xenograft tumor nude mice models. RESULTS The down-regulated NEDD4L in BLCA patients was associated with unfavorable survival. NEDD4L suppressed the viability (inhibition rate 57.1%/49.0%), migration (inhibition rate 49.7%/77.1%), invasion (inhibition rate 50.6%/75.7%), promoted the apoptosis of T24/5637 cells (promotion rate 243.8%/201.9%), reduced IC 50 of DDP-resistant T24/5637 cells from 132.2/101.8 to 57.81/59.71 μM, respectively, and inactivated the p62/Keap1/Nrf2 pathway in T24/5637 cells. p62 up-regulation partially abrogated the inhibition of NEDD4L on the Keap1/Nrf2 pathway activity, the malignant behavior of BLCA cells, and the DDP resistance of DDP-resistant BLCA cells. NEDD4L overexpression inhibited the tumor growth and the p62/Keap1/Nrf2 pathway activity in vivo in BLCA. CONCLUSION NEDD4L inhibits the progression of BLCA by inactivating the p62/Keap1/Nrf2 pathway. It may be an effective target for BLCA treatment.
Collapse
Affiliation(s)
- Qi Wu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Huijiang Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Shengjie You
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Zhaoyu Xu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xiang Liu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xuedong Chen
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Weili Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Junjie Ye
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Peng Li
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xiaoqing Zhou
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| |
Collapse
|
4
|
Lin Y, Lin P, Guo W, Huang J, Xu X, Zhuang X. PLAGL2 promotes the stemness and is upregulated by transcription factor E2F1 in human lung cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:941-949. [PMID: 36620907 DOI: 10.1002/tox.23739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
This study mainly focuses on revealing the role of PLAGL2 in lung cancer stemness. In vitro and in vivo experiments were performed to evaluate the effects of PLAGL2 on lung cancer cell stemness. Mechanistic analysis using luciferase reporter and ChIP assays were implemented to reveal the underlying mechanisms. The transcriptional factor E2F1 transcriptionally activated PLAGL2 expression via directly binding to PLAGL2 promoter in lung cancer cells. Moreover, PLAGL2 promoted the stemness of lung cancer cells dependent on E2F1-mediated transcriptional activation. This study provides a potential target for lung cancer progression.
Collapse
Affiliation(s)
- Yijian Lin
- Department of Respiratory and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Peihuang Lin
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Weifeng Guo
- Department of Respiratory and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Junling Huang
- Department of Respiratory and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xiaoting Xu
- Department of Respiratory and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xibin Zhuang
- Department of Respiratory and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
5
|
Yang Y, Lu Y, Zhang C, Guo Q, Zhang W, Wang T, Xia Z, Liu J, Cheng X, Xi T, Jiang F, Zheng L. Phenazine derivatives attenuate the stemness of breast cancer cells through triggering ferroptosis. Cell Mol Life Sci 2022; 79:360. [PMID: 35690642 PMCID: PMC11072418 DOI: 10.1007/s00018-022-04384-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Breast cancer stem cells (BCSCs) are positively correlated with the metastasis, chemoresistance, and recurrence of breast cancer. However, there are still no drugs targeting BCSCs in clinical using for breast cancer treatment. Here, we tried to screen out small-molecule compounds targeting BCSCs from the phenazine library established by us before. We focused on the compounds without affecting cell viability and screened out three potential compounds (CPUL119, CPUL129, CPUL149) that can significantly attenuate the stemness of breast cancer cells, as evident by the decrease of stemness marker expression, CD44+/CD24- subpopulation, mammary spheroid-formation ability, and tumor-initiating capacity. Additionally, these compounds suppressed the metastatic ability of breast cancer cells in vitro and in vivo. Combined with the transcriptome sequencing analysis, ferroptosis was shown on the top of the most upregulated pathways by CPUL119, CPUL129, and CPUL149, respectively. Mechanistically, we found that these three compounds could trigger ferroptosis by accumulating and sequestering iron in lysosomes through interacting with iron, and by regulating the expression of proteins (IRP2, TfR1, ferritin) engaged in iron transport and storage. Furthermore, inhibition of ferroptosis rescued the suppression of these three compounds on breast cancer cell stemness. This study suggests that CPUL119, CPUL129, and CPUL149 can specifically inhibit the stemness of breast cancer cells through triggering ferroptosis and may be the potential compounds for breast cancer treatment.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuanyuan Lu
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Chunhua Zhang
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450003, People's Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450003, People's Republic of China
| | - Ting Wang
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Zhuolu Xia
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Jing Liu
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Xiangyu Cheng
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Feng Jiang
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|