1
|
Nowacka A, Ziółkowska E, Smuczyński W, Bożiłow D, Śniegocki M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants (Basel) 2025; 14:351. [PMID: 40227413 PMCID: PMC11939735 DOI: 10.3390/antiox14030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Curcumin, a polyphenol found in turmeric, demonstrates multifaceted anti-cancer activity against glioblastoma. Its therapeutic potential stems from its ability to modulate various molecular pathways implicated in glioblastoma development and progression, enhance the effectiveness of radiation therapy, and induce cancer cell death through diverse mechanisms, including apoptosis, autophagy, and cell cycle arrest. These combined actions make curcumin a promising candidate for glioblastoma treatment, warranting further investigation into its clinical application. In this review, we summarize the latest research on curcumin and its analogs' potential in glioblastoma therapy.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Wojciech Smuczyński
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Techników 3, 85-801 Bydgoszcz, Poland
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Maciej Śniegocki
- Department of Neurosurgery, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
2
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Zhu S, Jin Q, Zhang S, Song Z, Zhang S, Zhao Z. Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Radix Paeoniae Rubra Against Glioma. Appl Biochem Biotechnol 2024; 196:6424-6441. [PMID: 38381309 DOI: 10.1007/s12010-024-04887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Glioma has a high mortality and can hardly be completely cured. Radix Paeoniae Rubra (RPR) is a prevalent component in traditional Chinese medicine used for tumor treatments. We explored the mechanism of RPR in treating glioma using network pharmacology and experiments. A network pharmacology approach was used to screen active ingredients, targets of RPR and glioma. We then constructed a herb-active ingredient-target-pathway network and conducted protein-protein interaction (PPI) network analysis, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was also performed. Using CCK-8, colony formation, and xenograft experiments, we evaluated the effect of RPR on glioma. The involved pathway and proteins were identified by Western blot. From public databases, we identified nine active RPR ingredients and 40 overlapping targets among 109 RPR targets and 1360 glioma-associated targets. The PPI analysis revealed ten targets, such as AKT1, TP53, and VEGFA, which were identified as hub genes. The results from GO and KEGG analysis highlighted the involvement of the PI3K/AKT pathway. A herb-active ingredient-target-pathway network was constructed. By docking molecular structures, six suitable conformations have been identified. The RPR extract demonstrated anti-tumor properties by inhibiting glioma cell proliferation in vitro and in vivo, likely achieved by suppressing the phosphorylation of the PI3K/AKT signaling pathway. RPR concurrently downregulated the phosphorylation level of AKT1 and the protein expression level of VEGFA, while upregulating the expression of P53 in the U251 cell line. Utilizing network pharmacology and molecular docking, our study not only predicted the impact of RPR on glioma but also delineated the herb-active ingredient-target-pathway network. Experimentally, we confirmed that RPR may exert its anti-tumor properties by inhibiting the phosphorylation of the PI3K/AKT pathway, including AKT1, and by regulating the expression levels of VEGFA and P53.
Collapse
Affiliation(s)
- Siyu Zhu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shiyang Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shiqi Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Chiang YC, Selvam P, Liu YX, Shih PC, Chen NF, Kuo HM, Lin HYH, Wen ZH, Chen WF. STAT3 phosphorylation inhibitor Bt354 exhibits anti-neoplastic activity in glioblastoma multiforme cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3292-3303. [PMID: 38415901 DOI: 10.1002/tox.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.
Collapse
Affiliation(s)
- Yi-Chun Chiang
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - You-Xuan Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules 2023; 28:4643. [PMID: 37375197 DOI: 10.3390/molecules28124643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 μM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yumei Li
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Bello-Alvarez C, Zamora-Sánchez CJ, Peña-Gutiérrez KM, Camacho-Arroyo I. Progesterone and its metabolite allopregnanolone promote invasion of human glioblastoma cells through metalloproteinase‑9 and cSrc kinase. Oncol Lett 2023; 25:223. [PMID: 37153033 PMCID: PMC10157356 DOI: 10.3892/ol.2023.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastomas are the most aggressive and common primary brain tumors in adults. Glioblastoma cells have a great capacity to migrate and invade the brain parenchyma, often reaching the contralateral hemisphere. Progesterone (P4) and its metabolite, allopregnanolone (3α-THP), promote the migration and invasion of human glioblastoma-derived cells. P4 induces migration in glioblastoma cells by the activation of the proto-oncogene tyrosine-protein kinase Src (cSrc) and focal adhesion kinase (Fak). In breast cancer cells, cSrc and Fak promote invasion by increasing the expression and activation of extracellular matrix metalloproteinases (MMPs). However, the mechanism of action by which P4 and 3a-THP promote invasion in glioblastoma cells remains unclear. The effects of P4 and 3α-THP on the protein expression levels of MMP-2 and -9 and the participation of cSrc in progestin effects in U251 and U87 human glioblastoma-derived cells were evaluated. It was determined by western blotting that the P4 increased the protein expression level of MMP-9 in U251 and U87 cells, and 3α-THP increased the protein expression level of MMP-9 in U87 cells. None of these progestins modified MMP-2 protein expression levels. The increase in MMP-9 expression was reduced when the intracellular progesterone receptor and cSrc expression were blocked with small interfering RNAs. Cell invasion induced by P4 and 3α-THP was also blocked by inhibiting cSrc activity with PP2 or by cSrc gene silencing. These results suggest that P4 and its metabolite 3α-THP induce the invasion of glioblastoma cells by increasing MMP-9 expression through the cSrc kinase family. The results of this study provide information of interest in the context of targeted therapies against molecular pathways involved in glioblastoma invasion.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carmen J. Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Karla M. Peña-Gutiérrez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence to: Dr Ignacio Camacho-Arroyo, Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Avenue Universidad 3000, Coyoacán, Mexico City 04510, Mexico, E-mail:
| |
Collapse
|
7
|
Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988300 DOI: 10.1002/tox.23797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM) is classified as a stage-IV glioma. Unfortunately, there are currently no curative treatments for GBM. Poly(rC)-binding protein 1 (PCBP1) is a cytosolic iron chaperone with diverse functions. PCBP1 is also known to regulate autophagy, but the role of PCBP1 in ferroptosis, iron-dependent cell death pathway, remains unrevealed in GBM cells. Here, we investigated the effects of borax, a boron compound, on the ferroptosis signaling pathway mediated by PCBP1 and autophagy. The study analyzed cell viability, proliferation, and cell cycle on U87-MG and HMC3 cells to investigate the effects of borax. After determining the cytotoxic concentrations of borax, morphological analyzes and measurement of PCBP1, Beclin1, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase 4 (GPx4) and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were performed. Finally, expression levels of PCBP1, Beclin1, GPx4 and ACSL4, and caspase-3/7 activity were determined. We found that borax reduced U87-MG cell viability in a concentration- and time-dependent manner. Additionally, borax altered cell proliferation and remarkably reduced S phase in the U87-MG cells and exhibited selectivity by having an opposite effect on normal cells (HMC3). According to DAPI staining, borax caused nuclear deficits in U87-MG cells. The result showed that borax in U87-MG cells induced reduction of the PCBP1, GSH, and GPx4 and enhancement of Beclin1, MDA, and ACSL4. Furthermore, borax triggered apoptosis by activating caspase 3/7 in U87-MG cells. Our study indicated that the borax has potential as an anticancer treatment for GBM via regulating PCBP1/Beclin1/GPx4/ACSL4 signaling pathways.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Davran
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Cengiz Tuncer
- Department of Neurosurgery, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|
8
|
Yang HL, Chang YH, Pandey S, Bhat AA, Vadivalagan C, Lin KY, Hseu YC. Antrodia camphorata and coenzyme Q 0 , a novel quinone derivative of Antrodia camphorata, impede HIF-1α and epithelial-mesenchymal transition/metastasis in human glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947447 DOI: 10.1002/tox.23785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 μg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and β-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 μM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/β-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and β-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Yao-Hsien Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Asif Ali Bhat
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
9
|
Guan B, Li H, Yao J, Guo J, Yu F, Li G, Wan B, Ma J, Huang D, Sun L, Chen Y. CCL3-CCR5 axis promotes cell migration and invasion of colon adenocarcinoma via Akt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:172-184. [PMID: 36346222 DOI: 10.1002/tox.23675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Infiltration of tumor-associated macrophages (TAMs) can promote tumorigenesis and development. C-C motif chemokine ligand 3 (CCL3) was reported to be derived from TAMs and tumor cells and facilitate the progression of several cancers. Nevertheless, whether CCL3 can be derived from TAMs and tumor cells of colon adenocarcinoma (COAD) is unclarified. METHODS Peripheral blood monocytes-derived macrophages were polarized by the conditioned medium from COAD cells to establish TAM-like macrophages (TAM1/2). RT-qPCR and western blotting were used for detection of expression levels of CCL3 and its receptors C-C motif chemokine receptor 1 (CCR1) and CCR5 in TAM1/2 and COAD cells. Immunofluorescence staining was utilized for evaluating CCL3, CD163 and CCR5 expression. The Akt signaling pathway-associated protein levels were measured by western blotting. Transwell assays were used for assessing cell migration and invasiveness. RESULTS CCL3 displayed a high level in TAMs and cancer cells of COAD. CCL3 activated the Akt signaling pathway by binding to CCR5. CCL3-CCR5 axis facilitated COAD cell migration and invasiveness by activating the Akt signaling. CCL3 derived from both TAMs and cancer cells contributed to the malignant behaviors of COAD cells. High expression of CCL3/CCR5 was closely associated with poor prognoses of COAD patients. CONCLUSION CCL3-CCR5 interaction promotes cell migration and invasiveness, and functions as a prognostic biomarker for COAD.
Collapse
Affiliation(s)
- Bugao Guan
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Hongbo Li
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Jian Yao
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Jinbao Guo
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Fei Yu
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Guangrun Li
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Benhai Wan
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Jun Ma
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Desong Huang
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Lu Sun
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Yan Chen
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
10
|
Wu H, Tu S, Zhuo Z, Jiang R, Zeng R, Yang Q, Lian Q, Sha W, Chen H. Investigating the Mechanisms of Bisdemethoxycurcumin in Ulcerative Colitis: Network Pharmacology and Experimental Verification. Molecules 2022; 28:68. [PMID: 36615264 PMCID: PMC9822216 DOI: 10.3390/molecules28010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis is a chronic inflammatory bowel disorder that is hard to cure once diagnosed. Bisdemethoxycurcumin has shown positive effects on inflammatory diseases. However, the underlying bioactive interaction between bisdemethoxycurcumin and ulcerative colitis is unclear. The objective of this study was to determine the core target and potential mechanism of action of bisdemethoxycurcumin as a therapy for ulcerative colitis. The public databases were used to identify potential targets for bisdemethoxycurcumin and ulcerative colitis. To investigate the potential mechanisms, the protein-protein interaction network, gene ontology analysis, and Kyoto encyclopedia of genes and genomes analysis have been carried out. Subsequently, experimental verification was conducted to confirm the findings. A total of 132 intersecting genes of bisdemethoxycurcumin, as well as ulcerative coli-tis-related targets, were obtained. SRC, EGFR, AKT1, and PIK3R1 were the targets of highest potential, and the PI3K/Akt and MAPK pathways may be essential for the treatment of ulcerative colitis by bisdemethoxycurcumin. Molecular docking demonstrated that bisdemethoxycurcumin combined well with SRC, EGFR, PIK3R1, and AKT1. Moreover, the in vitro experiments suggested that bisdemethoxycurcumin might reduce LPS-induced pro-inflammatory cytokines levels in RAW264.7 cells by suppressing PI3K/Akt and MAPK pathways. Our study provided a comprehensive overview of the potential targets and molecular mechanism of bisdemethoxycurcumin against ulcerative colitis. Furthermore, it also provided a theoretical basis for the clinical treatment of ulcerative colitis, as well as compelling evidence for further study on the mechanism of bisdemethoxycurcumin in the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sha Tu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Rui Jiang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qizhou Lian
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR 999077, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|