1
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Ni L, Gao Q, Zhao Q, Dai K, Jin M, Fu C, Xiao M, Zhu W, Bi Y. Circ-EIF3I Promotes Hepatocellular Carcinoma Progression Through Modulating miR-361-3p/DUSP2 Axis. DNA Cell Biol 2024; 43:258-266. [PMID: 38513057 DOI: 10.1089/dna.2023.0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers globally. Circular RNAs (circRNAs) have been implicated in the development of HCC. Previous studies have confirmed that circ-EIF3I plays an important role in the progress of lung cancer. Nevertheless, the biological functions of circ-EIF3I and the underlying mechanisms by which they regulate HCC progression remain unclear. In this study, the regulatory mechanism and targets were studied with bioinformatics analysis, luciferase reporting analysis, transwell migration, Cell Counting Kit-8, and 5-Ethynyl-2'-deoxyuridine analysis. In addition, in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circ-EIF3I in HCC. The result shows that the circ-EIF3I expression was increased in HCC cell line, which means that circ-EIF3I plays a role in the progression of HCC. Downregulation of circ-EIF3I suppressed HCC cells' proliferation and migration in both in vivo and in vitro experiments. Bioinformatics and luciferase report analysis confirmed that both miR-361-3p and Dual-specificity phosphatase 2 (DUSP2) were the downstream target of circ-EIF3I. The overexpression of DUSP2 or inhibition of miR-361-3p restored HCC cells' proliferation and migration ability after silence circ-EIF3I. Taken together, our study found that downregulation of circ-EIF3I suppressed the progression of HCC through miR-361-3p/DUSP2 Axis.
Collapse
Affiliation(s)
- Lingna Ni
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Qianqian Gao
- Department of Pathology, Changzhou Tumor Hospital, Changzhou, China
| | - Qiu Zhao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Kejun Dai
- Department of Radiotherapy, Changzhou Tumor Hospital, Changzhou, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cong Fu
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Min Xiao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Wenyu Zhu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yanzhi Bi
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| |
Collapse
|
3
|
Wang R, Zhong J, Pan X, Su Z, Xu Y, Zhang M, Chen X, Chen N, Yu T, Zhou Q. A novel intronic circular RNA circFGFR1 int2 up-regulates FGFR1 by recruiting transcriptional activators P65/FUS and suppressing miR-4687-5p to promote prostate cancer progression. J Transl Med 2023; 21:840. [PMID: 37993879 PMCID: PMC10664560 DOI: 10.1186/s12967-023-04718-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a core component of the FGFs/FGFR pathway that activates multiple signalling pathways, including ERK1/2, PI3K/AKT, PLCγ, and NF-κB. Aberrant expression of FGFR1 due to gene amplification, chromosome rearrangement, point mutation, and epigenetic deregulations, have been reported in various cancers. FGFR1 overexpression has also been reported in prostate cancer (PCa), but the underlining mechanisms are not clear. Here we report a novel circular RNA, circFGFR1int2, derived from intron 2 of FGFR1 gene, which is overexpressed in PCa and associated with tumor progression. Importantly, we show that circFGFR1int2 facilitates FGFR1 transcription by recruiting transcription activators P65/FUS and by interacting with FGFR1 promoter. Moreover, we show that circFGFR1int2 suppresses post-transcriptional inhibitory effects of miR-4687-5p on FGFR1 mRNA. These mechanisms synergistically promote PCa cell growth, migration, and invasion. Overexpression of circFGFR1int2 is significantly correlated with higher tumor grade, Gleason score, and PSA level, and is a significant unfavorable prognosticator for CRPC-free survival (CFS) (RR = 3.277, 95% confidence interval: 1.192-9.009; P = 0.021). These findings unravelled novel mechanisms controlling FGFR1 gene expression by intronic circRNA and its potential clinicopathological utility as a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinjing Zhong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhengzheng Su
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunyi Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ji W, Bai J, Ke Y. Exosomal ZFPM2-AS1 contributes to tumorigenesis, metastasis, stemness, macrophage polarization, and infiltration in hepatocellular carcinoma through PKM mediated glycolysis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1332-1346. [PMID: 36880413 DOI: 10.1002/tox.23767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND With high morbidity and mortality, hepatocellular carcinoma (HCC) deserves further exploration in its pathogenesis mechanisms for promising prognostic and therapeutic markers. This research was conducted to dig out roles of exosomal ZFPM2-AS1 in HCC. METHODS The level of exosomal ZFPM2-AS1 in HCC tissue and cells was determined by Real-time fluorescence quantitative PCR. Pull-down assay and dual-luciferase reporter assay were performed to identify interactions between ZFPM2-AS1 and miRNA-18b-5p, as well as miRNA-18b-5p and PKM. Western blotting was employed to explore the potential regulatory mechanism. Several in vitro assays were conducted in mice xenograft and orthotopic transplantation models to investigate impacts of exosomal ZFPM2-AS1 on HCC development, metastasis, and macrophage infiltration. RESULTS ZFPM2-AS1 was activated in HCC tissue and cells, with high enrichment in HCC-derived exosomes. Exosomal ZFPM2-AS1 enhances the cell abilities and stemness of HCC. MiRNA-18b-5p was directly targeted by ZFPM2-AS1 which triggered PKM expression via sponging miR-18b-5p. Exosomal ZFPM2-AS1 modulated glycolysis via PKM in an HIF-1α dependent way in HCC, promoting M2 polarization, and macrophage recruitment. Furthermore, exosomal ZFPM2-AS1 enhanced HCC cell growth, metastasis, and M2 infiltration in vivo. CONCLUSIONS Exosomal ZFPM2-AS1 exerted regulatory function on the progression of HCC via miR-18b-5p/PKM axis. ZFPM2-AS1 could be promising biomarker for the diagnosis and therapies of HCC.
Collapse
Affiliation(s)
- Wenjing Ji
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jie Bai
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue Ke
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Mo Z, Li R, Cao C, Li Y, Zheng S, Wu R, Xue J, Hu J, Meng H, Zhai H, Huang W, Zheng F, Zhou B. Splicing factor SNRPA associated with microvascular invasion promotes hepatocellular carcinoma metastasis through activating NOTCH1/Snail pathway and is mediated by circSEC62/miR-625-5p axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1022-1037. [PMID: 36715182 DOI: 10.1002/tox.23745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Microvascular invasion (MVI) is a crucial risk factor related to the metastasis of hepatocellular carcinoma (HCC), but the underlying mechanisms remain to be revealed. Characterizing the inherent mechanisms of MVI may aid in the development of effective treatment strategies to improve the prognosis of HCC patients with metastasis. Through the Gene Expression Omnibus (GEO) database, we identified that small nuclear ribonucleoprotein polypeptide A (SNRPA) was related to MVI in HCC. SNRPA was overexpressed in MVI-HCC and correlated with poor patient survival. Mechanistically, SNRPA promoted the epithelial-mesenchymal transition (EMT)-like process for HCC cells to accelerate metastasis by activating the NOTCH1/Snail pathway in vitro and in vivo. Importantly, circSEC62 upregulated SNRPA expression in HCC cells via miR-625-5p sponging. Taking these results together, our study identified a novel regulatory mechanism among SNRPA, miR-625-5p, circSEC62 and the NOTCH1/Snail pathway in HCC, which promoted metastasis of HCC and may provide effective suggestions for improving the prognosis of HCC patients with metastasis.
Collapse
Affiliation(s)
- Zhaohong Mo
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chuanlin Cao
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyang Zheng
- Department of Head and Neck surgery, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Runxin Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hang Zhai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiling Huang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|