1
|
Gong L, Wu L, Zhao S, Xiao S, Chu X, Zhang Y, Li F, Li S, Yang H, Jiang P. Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). Int J Mol Med 2025; 55:93. [PMID: 40242977 PMCID: PMC12045471 DOI: 10.3892/ijmm.2025.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Ferroptosis is a type of iron‑dependent cell death characterized by excessive lipid peroxidation and may serve as a potential therapeutic target in cancer treatment. While the mechanisms governing ferroptosis continue to be explored and elucidated, an increasing body of research highlights the significant impact of epigenetic modifications on the sensitivity of cancer cells to ferroptosis. Epigenetic processes, such as DNA methylation, histone modifications and non‑coding RNAs, have been identified as key regulators that modulate the expression of ferroptosis‑related genes. These alterations can either enhance or inhibit the sensitivity of gastrointestinal cancer (GIC) cells to ferroptosis, thereby affecting the fate of GICs. Drugs that target epigenetic markers for advanced‑stage cancer have shown promising results in enhancing ferroptosis and inhibiting tumor growth. This review explores the intricate relationship between epigenetic regulation and ferroptosis in GICs. Additionally, the potential of leveraging epigenetic modifications to trigger ferroptosis in GICs is investigated. This review highlights the importance of further research to elucidate the specific mechanisms underlying epigenetic control of ferroptosis and to advance the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, Shandong 272000, P.R. China
| | - Shuai Xiao
- Department of Intensive Care Medicine, Tengzhou Central People's Hospital, Jining Medical University, Tengzhou, Shandong 277500, P.R. China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
| | - Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Fengfeng Li
- Neurosurgery Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shuhui Li
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Hui Yang
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, Shandong 272000, P.R. China
| |
Collapse
|
2
|
Mao Z, Wang X, Zhao Y, Yang F, Qin Q, Jiang R. The Role of MiR-375 in Migration and Invasion of H.pylori-induced Gastric Cancer Cell Model. Cell Biochem Biophys 2025; 83:429-435. [PMID: 39212822 DOI: 10.1007/s12013-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
This article aimed to investigate the mechanism of miR-375 in Hp-induced gastric cancer cells (GCCs) model. Human normal gastric mucosal epithelial cell (GMEC) line GES-1 and human GCCs strain MKN45 were used as research objects. The expression of miR-375 was detected after H.pylori (Hp) infection of GCCs. The cell activity was detected by, 53-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the cell multiplication was determined by cell counting kit-8 (CCK-8) method. Transwell assay was used to detect the effect of cell invasion and migration ability. The expression levels of JAK1 and STAT3 proteins were determined by Western blot (WB). MiR-375 was increased in GCCs after Hp infection, and JAK1, STAT3, p-JAK1, and p-STAT3 in GCCs after Hp infection were visibly increased. In addition, the overexpressed miR-375 promoted the multiplication activity, migration, and invasion ability of GCCs. MiR-375 promotes Hp-induced migration and invasion of GCCs by targeting JAK1/STAT3. This article reveals the important role of miR-375 in Hp-induced GC, which provides new clues for further study of its mechanism and therapeutic targets.
Collapse
Affiliation(s)
- Zhichao Mao
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Xinyu Wang
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Yongtang Zhao
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Fei Yang
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Qin Qin
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Ruilian Jiang
- Department of Cardiovascular, Yiling People's Hospital, Yichang, Hubei Province, China.
| |
Collapse
|
3
|
Zhang H, Hu J, Li Y, Liu Y, Shen H, Wang Z, Li Q. Comprehensive analysis and experimental validation of disulfidptosis-associated prognostic signature and immune microenvironment characterization of gastric cancer. Cancer Immunol Immunother 2025; 74:116. [PMID: 39998563 PMCID: PMC11861452 DOI: 10.1007/s00262-024-03883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer-related death worldwide. As a novel form of programmed cell death, disulfidptosis is characterized by excessive cysteine accumulation, disulfide stress and actin destruction. There is evidence that targeting disulfidptosis is a promising anticancer strategy. Further improvement of GC risk stratification based on disulfidptosis has positive clinical significance. METHODS We analyzed the expression levels of disulfidptosis-associated genes (DPAGs) in normal and GC tissues and characterized the molecular subtypes of GC patients. Based on the characteristics of DPAG subtypes, differentially expressed prognosis-related genes were selected by LASSO-univariate Cox analysis and multivariate Cox analysis analyzed to establish a prognostic model. Using single-cell sequencing analysis reveals the cell subpopulation for GC. The function of the selected target in GC was verified by in vitro experimental means, including siRNA, qRT-PCR, Western blot, CCK-8, and Transwell assay. RESULTS DPAG score was verified to be an independent prognostic factor of GC and was significantly associated with poor prognosis of gastric cancer. Subsequent studies on subgroup immunoinfiltration characteristics, drug sensitivity analysis, immunotherapy response and somatic mutation characteristics of DPAG score comprehensively confirmed the potential guiding significance of DPAG score for individualized treatment of gastric cancer patients. Single-cell sequencing analysis revealed the expression characteristics of DPAG-related prognostic signatures across cell subpopulations. In vitro experiments showed APC11, as one of the selected DPAGs, was highly expressed in gastric cancer, and knockdown of APC11 could significantly inhibit the proliferation and migration of GC cells, demonstrating the reliability of bioinformatics results. CONCLUSION The results of this study provide a new perspective for exploring the role of disulfidptosis in the occurrence and development of GC.
Collapse
Affiliation(s)
| | - Jinguo Hu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanqiang Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanyang Liu
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Huize Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zeng Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Jiang R, Li P, Meng E, Cheng X, Wu X, Wu H. Hsa_Circ_0008035 drives immune evasion of gastric cancer via promoting EXT1-mediated nuclear translocation of PKM2. Transl Oncol 2024; 48:102004. [PMID: 39053344 PMCID: PMC11325002 DOI: 10.1016/j.tranon.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 07/27/2024] Open
Abstract
Circular RNAs (circRNAs) have been reported to be associated with the malignant phenotypes of cancer. However, the role and underlying mechanism of hsa_Circ_0008035 in colorectal cancer (CRC) remains unclear. In this study, we elucidated the pivotal role of hsa_circ_0008035 in gastric cancer progression and immune evasion. Elevated hsa_circ_0008035 levels in gastric cancer patient serum correlated positively with disease advancement, including tumor stages and lymph node metastasis. Functional analyses revealed a negative association between hsa_circ_0008035 and CD8+ T cell number and function. Mechanistically, hsa_circ_0008035 encoded the novel protein EXT1-219aa, suppressing EXT1 phosphorylation and expression. Additionally, hsa_circ_0008035 regulated pyruvate metabolism by influencing the nucleus localization of PKM2. The identified EXT1/PKM2 axis further underscored the intricate regulatory mechanisms orchestrated by hsa_circ_0008035 in gastric cancer, offering potential diagnostic and therapeutic implications in the ongoing pursuit of targeted therapies for gastric cancer patients.
Collapse
Affiliation(s)
- Rongqi Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Enqing Meng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Xu Cheng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Xinyi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| |
Collapse
|
6
|
Bhat AA, Kukreti N, Afzal M, Goyal A, Thapa R, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Ferroptosis and circular RNAs: new horizons in cancer therapy. EXCLI JOURNAL 2024; 23:570-599. [PMID: 38887390 PMCID: PMC11180955 DOI: 10.17179/excli2024-7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| |
Collapse
|
7
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Zhang P, Chen Z, Lin X, Yu S, Yu X, Chen Z. Unravelling diagnostic clusters and immune landscapes of disulfidptosis patterns in gastric cancer through bioinformatic assay. Aging (Albany NY) 2023; 15:15434-15450. [PMID: 38154092 PMCID: PMC10781506 DOI: 10.18632/aging.205365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Disulfidptosis is a novel type of cell death mediated by SLC7A11-induced disulfide stress. Gastric cancer (GC) is a common malignant gastrointestinal tumor. Existing evidence shows that SLC7A11 can regulate cell death and improve the progression of GC, suggesting disulfidptosis may exist in the pathological process of GC. However, the underlying functions of disulfidptosis regulators in GC remain unknown. The dataset of GSE54129 was screened to comprehensively investigate the disulfidptosis-related diagnostic clusters and immune landscapes in GC. Totally 15 significant disulfidptosis regulators were identified via difference analysis between GC samples and controls. Then random forest model was utilized to assess their importance score (mean decrease Gini). Then a nomogram model was constructed, which could offer benefit to patients based on our subsequent decision curve analysis. All the included GC patients were divided into 2 disulfidptosis subgroups (clusterA and clusterB) according to the significant disulfidptosis regulators in virtue of consensus clustering analysis. The disulfidptosis score of each sample was calculated through PCA algorithms to quantify the disulfidptosis subtypes. Patients from clusterB exhibited lower disulfidptosis scores than those of patients in clusterA. In addition, we found that the cases in clusterB were closely associated with the immunity of activated CD4 T cell, etc., while clusterA was linked to immature dendritic cell, mast cell, natural killer T cell, natural killer cell, etc., which has a higher disulfidptosis score. Therefore, disulfidptosis regulators play an important role in the pathological process of GC, providing a promising marker and an immunotherapeutic strategy for future GC therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhuofeng Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | | | - Siyao Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China
| | - Zhuoqun Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
9
|
Yu L, Zheng J, Yu J, Zhang Y, Hu H. Circ_0067934: a circular RNA with roles in human cancer. Hum Cell 2023; 36:1865-1876. [PMID: 37592109 PMCID: PMC10587307 DOI: 10.1007/s13577-023-00962-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A circular RNA (circRNA) is a non-coding RNA (ncRNA) derived from reverse splicing from pre-mRNA and is characterized by the absence of a cap structure at the 5' end and a poly-adenylated tail at the 3' end. Owing to the development of RNA sequencing and bioinformatics approaches in recent years, the important clinical value of circRNAs has been increasingly revealed. Circ_0067934 is an RNA molecule of 170 nucleotides located on chromosome 3q26.2. Circ_0067934 is formed via the reverse splicing of exons 15 and 16 in PRKCI (protein kinase C Iota). Recent studies revealed the upregulation or downregulation of circ_0067934 in various tumors. The expression of circ_0067934 was found to be correlated with tumor size, TNM stage, and poor prognosis. Based on experiments with cancer cells, circ_0067934 promotes cancer cell proliferation, migratory activity, and invasion when overexpressed or downregulated. The potential mechanism involves the binding of circ_0067934 to microRNAs (miRNAs; miR-545, miR-1304, miR-1301-3p, miR-1182, miR-7, and miR-1324) to regulate the post-transcriptional expression of genes. Other mechanisms include inhibition of the Wnt/β-catenin and PI3K/AKT signaling pathways. Here, we summarized the biological functions and possible mechanisms of circ_0067934 in different tumors to enable further exploration of its translational applications in clinical diagnosis, therapy, and prognostic assessments.
Collapse
Affiliation(s)
- Liqing Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiacheng Zheng
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiali Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Yujun Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The First Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Huoli Hu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
| |
Collapse
|
10
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
11
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
12
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother 2023; 164:114993. [PMID: 37302320 DOI: 10.1016/j.biopha.2023.114993] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to increasing morbidity and mortality worldwide and seriously threatens human health and life. Cardiomyocyte death is considered the pathological basis of various CVDs, including myocardial infarction, heart failure, and aortic dissection. Multiple mechanisms, such as ferroptosis, necrosis, and apoptosis, contribute to cardiomyocyte death. Among them, ferroptosis is an iron-dependent form of programmed cell death that plays a vital role in various physiological and pathological processes, from development and aging to immunity and CVD. The dysregulation of ferroptosis has been shown to be closely associated with CVD progression, yet its underlying mechanisms are still not fully understood. In recent years, a growing amount of evidence suggests that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are involved in the regulation of ferroptosis, thus affecting CVD progression. Some ncRNAs also exhibit potential value as biomarker and/or therapeutic target for patients with CVD. In this review, we systematically summarize recent findings on the underlying mechanisms of ncRNAs involved in ferroptosis regulation and their role in CVD progression. We also focus on their clinical applications as diagnostic and prognostic biomarkers as well as therapeutic targets in CVD treatment. DATA AVAILABILITY: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
13
|
Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: From mechanisms to implications. Cancer Lett 2023; 561:216147. [PMID: 36965540 DOI: 10.1016/j.canlet.2023.216147] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Ferroptosis is a form of regulated cell death that is initiated by excessive lipid peroxidation that results in plasma membrane damage and the release of damage-associated molecular patterns. In recent years, ferroptosis has gained significant attention in cancer research due to its unique mechanism compared to other forms of regulated cell death, especially caspase-dependent apoptotic cell death. Gastrointestinal (GI) cancer encompasses malignancies that arise in the digestive tract, including the stomach, intestines, pancreas, colon, liver, rectum, anus, and biliary system. These cancers are a global health concern, with high incidence and mortality rates. Despite advances in medical treatments, drug resistance caused by defects in apoptotic pathways remains a persistent challenge in the management of GI cancer. Hence, exploring the role of ferroptosis in GI cancers may lead to more efficacious treatment strategies. In this review, we provide a comprehensive overview of the core mechanism of ferroptosis and discuss its function, regulation, and implications in the context of GI cancers.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Yang R, Ma L, Wan J, Li Z, Yang Z, Zhao Z, Ming L. Ferroptosis-associated circular RNAs: Opportunities and challenges in the diagnosis and treatment of cancer. Front Cell Dev Biol 2023; 11:1160381. [PMID: 37152286 PMCID: PMC10157116 DOI: 10.3389/fcell.2023.1160381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis is an emerging form of non-apoptotic regulated cell death which is different from cell death mechanisms such as autophagy, apoptosis and necrosis. It is characterized by iron-dependent lipid peroxide accumulation. Circular RNA (circRNA) is a newly studied evolutionarily conserved type of non-coding RNA with a covalent closed-loop structure. It exhibits universality, conservatism, stability and particularity. At present, the functions that have been studied and found include microRNA sponge, protein scaffold, transcription regulation, translation and production of peptides, etc. CircRNA can be used as a biomarker of tumors and is a hotspot in RNA biology research. Studies have shown that ferroptosis can participate in tumor regulation through the circRNA molecular pathway and then affect cancer progression, which may become a direction of cancer diagnosis and treatment in the future. This paper reviews the molecular biological mechanism of ferroptosis and the role of circular RNA in tumors and summarizes the circRNA related to ferroptosis in tumors, which may inspire research prospects for the precise prevention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Ruotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuofang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhengwu Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuochen Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
- *Correspondence: Liang Ming,
| |
Collapse
|
15
|
Usman M, Beilerli A, Sufianov A, Kudryashov V, Ilyasova T, Balaev P, Danilov A, Lu H, Gareev I. Investigations into the impact of non-coding RNA on the sensitivity of gastric cancer to radiotherapy. Front Physiol 2023; 14:1149821. [PMID: 36909247 PMCID: PMC9998927 DOI: 10.3389/fphys.2023.1149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a newly discovered functional RNA different from messenger RNA, which can participate in regulating the occurrence and development of tumors. More and more research results show that ncRNAs can participate in the regulation of gastric cancer (GC) radiotherapy response, and its mechanism may be related to its effect on DNA damage repair, gastric cancer cell stemness, cell apoptosis, activation of epidermal growth factor receptor signaling pathway, etc. This article summarizes the relevant mechanisms of ncRNAs regulating the response to radiotherapy in gastric cancer, which will be directly important for the introduction of ncRNAs particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) into clinical medicine as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Kudryashov
- Gastric Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Pavel Balaev
- Department of Oncology and Radiology, Ural State Medical University, Yekaterinburg, Russia
| | - Andrei Danilov
- Department of Clinical Pharmacology, Smolensk State Medical University, Smolensk, Russia
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
16
|
C-Fos-activated circRPPH1 contributes to glioma stemness. Clin Transl Oncol 2022; 25:1277-1286. [PMID: 36454517 DOI: 10.1007/s12094-022-03022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Cancer stem cells or cancer stemness has been confirmed to a major obstacle for glioma progression and it has also been reported that circRNAs play an important part in cancer progression. This study mainly focuses on revealing the role of circRPPH1 and the underlying mechanisms in glioma cell stemness. METHODS In vitro experiment including RT-qPCR, Western blot, sphere-formation analysis, and ALDH1 activity, and in vivo tumorigenesis experiments were performed to evaluate the effects of circRPPH1 on glioma cell stemness. Luciferase reporter, ChIP, and DNA pull-down analysis were used to reveal the underlying mechanisms. RESULTS It was found that circRPPH1 level was upregulated in glioma cell spheres and facilitated the stemness of glioma cells; C-FOS transcriptionally activated circRPPH1 expression via directly binding to circRPPH1 promoter in glioma cells. Moreover, circRPPH1 promoted the stemness of glioma cells dependent on c-FOS-mediated transcriptional activation. CONCLUSIONS This study indicates that c-Fos-activated circRPPH1 contributes to glioma stemness and provides a potential target for glioma progression based on the c-FOS/circRPPH1 regulatory axis.
Collapse
|