1
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
2
|
Bai D, Fan J, Li M, Dong C, Gao Y, Fu M, Liu Q, Liu H. Cognitive Function After Stopping Folic Acid and DHA Intervention: An Extended Follow-Up Results from the Randomized, Double Blind, Placebo-Controlled Trial in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis Rep 2024; 8:1285-1295. [PMID: 39434820 PMCID: PMC11491953 DOI: 10.3233/adr-240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Background Our previously randomized controlled trial (RCT) showed daily oral folic acid (FA), docosahexaenoic acid (DHA) and their combined treatment for 6 months could significantly improve cognitive function in mild cognitive impairment (MCI) individuals. Objective This study aimed to evaluate whether this benefit seen in the treatment group would sustain after stopping intervention when patients returned to a real-world. Methods RCT (ChiCTR-IOR-16008351) was conducted in Tianjin, China. 160 MCI elders aged ≥60 years were randomly divided into four groups: FA + DHA, FA, DHA, and control. 138 MCI elders who completed the 6-month interventional trial underwent another 6-month follow-up without receiving nutritional therapy. Cognitive performance was measured at 6 and 12 months. Blood amyloid-β peptide (Aβ) and homocysteine (Hcy) related biomarkers were measured at baseline and 6 months. Results In comparison to the end of nutritional therapy, all intervention groups had considerably lower full-scale IQ, arithmetic, and image completion scores during the follow-up period, while the combined intervention and DHA groups had significantly lower picture arrangement scores. Furthermore, after 6-month treatment with FA and FA + DHA, plasma Aβ40, Aβ42, and Hcy levels were significantly decreased. However, these biomarker levels at the start of follow-up were positively correlated with the degree of cognitive function change during follow-up period. Conclusions FA and DHA supplementation enhance cognitive performance in MCI elderly following a six-month intervention by reducing Hcy or Aβ levels. However, their effects on improving cognitive decline are likely to diminish when the intervention is discontinued.
Collapse
Affiliation(s)
- Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition, Tianjin First Central Hospital, Tianjin, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Yiming Gao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Hujiayuan Community Health Service Center of Binhai New Area, Tianjin, China
| | - Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Qianfeng Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| |
Collapse
|
3
|
Cao Z, Zhao S, Wu T, Sun F, Ding H, Hu S, Shi L. Genetic information supports a causal relationship between trace elements, inflammatory proteins, and COPD: evidence from a Mendelian randomization analysis. Front Nutr 2024; 11:1430606. [PMID: 39206312 PMCID: PMC11349556 DOI: 10.3389/fnut.2024.1430606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Dietary factors and nutritional status may be among the risk factors for Chronic Obstructive Pulmonary Disease (COPD). There exists a certain correlation between trace elements and COPD. Through Mendelian Randomization (MR) analysis, we investigated the causal relationships between trace elements, inflammatory proteins, and COPD. Methods We employed MR, multivariable MR (MVMR), and two-step MR (TSMR) approaches to assess the causal links between 15 trace elements and COPD, with 91 inflammatory proteins serving as mediators to further elucidate the tripartite causal relationships. Results Trace elements such as Folate (OR = 1.293, 95%CI 1.027-1.628; p = 0.029), Vitamin D (OR = 1.331, 95%CI 1.071-1.654; p = 0.010), Vitamin B12 (OR = 1.424, 95%CI 1.108-1.828; p = 0.006), and Iron (OR = 0.741, 95%CI 0.580-0.946; p = 0.016) demonstrated causal relationships with COPD. No causal relationship was observed in reverse MR. After adjusting for BMI, Folate (OR = 1.633, 95%CI 1.098-2.429; p = 0.015), Iron (OR = 0.507, 95%CI 0.31-0.778; p = 0.001), and Vitamin D (OR = 1.511, 95%CI 1.029-2.217; p = 0.034) were identified as independent risk factors for COPD, whereas Vitamin B12 (OR = 1.118, 95%CI 0.751-1.666; p = 0.581) was not. Mediation analysis indicated that CDCP1 (5.76%) may play a mediating role between Iron and COPD. Conclusion Trace elements such as Folate, Vitamin D, Vitamin B12, and Iron have causal relationships with COPD. After BMI adjustment, Folate, Vitamin D, and Iron emerge as independent risk factors. Furthermore, the inflammatory protein CDCP1 may partially mediate the causal relationship between Iron and COPD, offering a scientific basis for dietary recommendations that could benefit COPD patients. The supplementation of trace elements may be advantageous for individuals suffering from COPD.
Collapse
Affiliation(s)
- Zhenghua Cao
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Shengkun Zhao
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Tong Wu
- Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Feng Sun
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Ding
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Shaodan Hu
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Yang S, Sun Y, Luo Y, Liu Y, Jiang M, Li J, Zhang Q, Bai J. Hypermethylation of PPARG-encoding gene promoter mediates fine particulate matter-induced pulmonary fibrosis by regulating the HMGB1/NLRP3 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116068. [PMID: 38330871 DOI: 10.1016/j.ecoenv.2024.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
The inflammatory response induced by fine particulate matter (PM2.5), a common class of air pollutants, is an important trigger for the development of pulmonary fibrosis. However, the specific mechanisms responsible for this phenomenon are yet to be fully understood. To investigate the mechanisms behind the onset and progression of lung fibrosis owing to PM2.5 exposure, both rats and human bronchial epithelial cells were subjected to varying concentrations of PM2.5. The involvement of the PPARG/HMGB1/NLRP3 signaling pathway in developing lung fibrosis caused by PM2.5 was validated through the utilization of a PPARG agonist (rosiglitazone), a PPARG inhibitor (GW9662), and an HMGB1 inhibitor (glycyrrhizin). These outcomes highlighted the downregulation of PPARG expression and activation of the HMGB1/NLRP3 signaling pathway triggered by PM2.5, thereby eliciting inflammatory responses and promoting pulmonary fibrosis. Additionally, PM2.5 exposure-induced DNA hypermethylation of PPARG-encoding gene promoter downregulated PPARG expression. Moreover, the DNA methyltransferase inhibitor 5-azacytidine mitigated the hypermethylation of the PPARG-encoding gene promoter triggered by PM2.5. In conclusion, the HMGB1/NLRP3 signaling pathway was activated in pulmonary fibrosis triggered by PM2.5 through the hypermethylation of the PPARG-encoding gene promoter.
Collapse
Affiliation(s)
- Siyu Yang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China; Chongqing Nanan District Center for Disease Control and Prevention, Chongqing 400066, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yajun Luo
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Yingyi Liu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Mengyu Jiang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Jiayou Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Qibing Zhang
- Department of pharmacy, The Second People's Hospital of Deyang City, Deyang 618000, China.
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China.
| |
Collapse
|
5
|
Huang AA, Huang SY. Quantification of the Relationship of Pyridoxine and Spirometry Measurements in the United States Population. Curr Dev Nutr 2023; 7:100078. [PMID: 37529119 PMCID: PMC10387570 DOI: 10.1016/j.cdnut.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 08/03/2023] Open
Abstract
Background There has been evidence to suggest associations between vitamins and lung function. Objective This study aimed to examine the association between vitamin B6 and spirometry values. Methods A cross-sectional study was done using National Health and Nutritional Examination Surveys (NHANES) 2007-2012, which is a nationally representative, modern cohort. Spirometry, a clinical pulmonary function test, measured the amount and speed of air a person could exhale after taking the deepest possible breath after forceful expiratory volume at 1 s (FEV1) and forced vital capacity (FVC). After determination of the relationship of the linearity of variables, univariable and multivariable models were fitted to investigate the effect of vitamin B6 on FEV1 and FVC. The National Center for Health Statistics Ethics Review Board granted permission for the study's data collection and analysis. Results Of 19,160 individuals who had complete information on vitamin B6 intake, FEV1, and FVC, it was found each mg of vitamin B6 intake was associated with increase in 166.41 mL of FEV1 (95% CI: 156.71, 176.12; P < 0.01) and 221.6 mL of FVC (95% CI: 209.62, 233.57; P < 0.01). After controlling for potential confounders (age, race, sex, body mass index, education, and income), multiple linear regression found that each mg of vitamin B6 was associated with increase in 25.98 mL of FEV1 (95% CI: 19.15, 32.80, P < 0.01) and 38.97 mL of FVC (95% CI: 30.65, 47.30, P < 0.01). Conclusion Increased vitamin B6 intake is associated with improvement in lung function. Further prospective studies are required to ascertain whether increased vitamin B6 can lead to increased long-term spirometry measurements and the specific therapeutic dose-response relationship.
Collapse
Affiliation(s)
- Alexander A. Huang
- Cornell University, Ithaca, New York
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Samuel Y. Huang
- Cornell University, Ithaca, New York
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|