1
|
Gupta D, Shrivastava S, Shukla S. Dose-Dependent Improvement of Caffeic Acid Against Acrylamide-Induced Male Reproductive Dysfunction. Drug Dev Res 2025; 86:e70103. [PMID: 40400311 DOI: 10.1002/ddr.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/12/2025] [Accepted: 05/01/2025] [Indexed: 05/23/2025]
Abstract
Dietary exposure to acrylamide is almost unavoidable and may result into long-term consequences. It has been reported to cause sexual dysfunction and even infertility. This study aimed to investigate the protective effects of caffeic acid against acrylamide-induced reproductive dysfunction in male rats. Group 1 served as the control; group 2 received acrylamide at a dose of 40 mg/kg for 10 days. In groups, 3-6, acrylamide was given as in group 2, followed by therapy of caffeic acid (10, 20, 30, 40 mg/kg) for 3 consecutive days. It was found that acrylamide causes significant alteration in serum concentrations of FSH, testosterone, and LH; decreased sperm motility and viability. Acrylamide administration causes alteration in biochemical parameters including lipid peroxidation, reduced glutathione, and antioxidant enzymes (SOD and CAT) along with triglyceride, cholesterol, and seminal fructose. Moreover, acrylamide causes histological alterations and promotes DNA damage as evident by COMET assay. After caffeic acid treatment, serological, biochemical, and histological alterations returned to almost normal ranges. Based on our findings, it is reasonable to conclude that caffeic acid, a natural antioxidant, is a potential medication to lessen any harmful damage in male gonads brought on by acrylamide consumption.
Collapse
Affiliation(s)
- Divya Gupta
- Reproductive Biology and Toxicology Lab, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sadhana Shrivastava
- Reproductive Biology and Toxicology Lab, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Lab, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
2
|
Fu DX, Lei YT, Guo HB, Chen T, Gao XY, Wang XL, Huang X, Song LL, Wang SY, Dai QX. PRDX1 affects acrylamide-induced neural damage through the PTEN/AKT signaling pathway. Neurotoxicology 2025; 108:150-158. [PMID: 40189060 DOI: 10.1016/j.neuro.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Peroxiredoxin 1 (PRDX1) is a member of the peroxidase family of antioxidant enzymes. However, the role and mechanism of PRDX1 in acrylamide (ACR)-induced nerve damage have not been reported. We used SD rats and well-differentiated rat pheochromocytoma cells (PC-12 cells) to established in vivo and in vitro models of ACR. Immunohistochemistry, immunofluorescence and RT-qPCR experiments were used to detect the expression of PRDX1 in neurons of rat hippocampal tissue. The ultrastructural changes of neurons and PC-12 cells in rat hippocampal tissue were observed under transmission electron microscope. Western blot detected the protein expression levels of PRDX1, PTEN, AKT and p-AKT. In vivo and in vitro experimental results showed that PRDX1 showed a significant up-regulation trend after ACR exposure (p < 0.05). In vitro experiments showed that after inhibiting PRDX1 expression with PRDX1 siRNA, the survival rate of PC-12 cells significantly increased, and the damage to cell morphology and organelles was markedly improved. Western blot analysis revealed that ACR exposure can cause a significant increase in PTEN protein expression level and p-AKT/AKT protein ratio (p < 0.05). After inhibiting the expression of PRDX1, the protein expression level of PTEN and the protein ratio of p-AKT/AKT were significantly reduced, while the protein levels of SYN1 and BDNF were significantly increased (p < 0.05). This study, for the first time, demonstrates that PRDX1 affects ACR-induced neurotoxicity by regulating the PTEN/AKT signaling pathway. And, provides novel insights into the prevention and treatment of neurotoxicity in populations exposed to ACR.
Collapse
Affiliation(s)
- Dong-Xue Fu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China; Department of Preventive Medicine, Department of medicine, Qiannan medical college for nationalities, Guizhou Province, PR China
| | - Hai-Bo Guo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Ting Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Xiang-Ying Gao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | | | - Ling-Ling Song
- Department of Neurology, The Second Hospital of Chaoyang (Women's and Children's Hospital of Chaoyang), PR China.
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China.
| | - Qin-Xue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, PR China.
| |
Collapse
|
3
|
Gelen V, Başeğmez M, Dursun İ, Çinar I, Kara A. Propolis Extract Reduces Doxorubucin-Induced Brain Damage by Regulating Inflammation, ER Stress, Oxidative Stress, and Apoptosis. Food Sci Nutr 2025; 13:e70194. [PMID: 40270939 PMCID: PMC12014397 DOI: 10.1002/fsn3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Doxorubicin (DOX) is the most widely used chemotherapeutic agent to treat various tumors. DOX treatment can damage many organs, including the brain, by causing oxidative stress. Several antioxidant substances can lessen the effects of DOX or make antioxidant defense systems work faster. Propolis (PROP) is a powerful agent with various healing effects, including antioxidant, antiproliferative, and anti-inflammatory. The point of this study is to look at the histopathological changes, apoptosis, and antioxidant effects of DOX on brain damage in rats. To find out what kinds of phytochemicals were in PROP from the Karlıova region of Bingöl province, ultra-high-performance liquid chromatography (UHPLC-Orbitrap-HRMS) was used. Then, we made an ethanol extract of it. A total of 28 healthy male Wistar albino rats, each 12 weeks old and weighing between 220 and 250 g, were included in the study. Rats were divided into four groups: control, PROP, DOX, and PROP+DOX. We applied the relevant treatments to the determined groups. Following the application, we decapitated the rats under the appropriate conditions and collected blood and brain tissue samples. We examined oxidative stress parameters in blood samples and used brain tissue samples for histopathological, biochemical, and molecular analyses. We determined DOX levels in the brain tissue samples using UHPLC-Orbitrap-HRMS. The findings obtained showed that the PROP extract improved DOX-induced brain tissue damage. In addition, PROP extract attenuated DOX-induced brain tissue inflammation, ER stress, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Volkan Gelen
- Department of Physiology, Faculty of Veterinary MedicineKafkas UniversityKarsTürkiye
| | - Mehmet Başeğmez
- Acıpayam Vocational High School, Department of Veterinary, Laboratory and Veterinary Health ProgramPamukkale UniversityDenizliTürkiye
| | - İnan Dursun
- Center of Research and Application CenterBingöl UniversityBingölTürkiye
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and LivestockBingöl UniversityBingölTürkiye
| | - Irfan Çinar
- Department of Pharmacology and Toxicolog, Faculty of MedicineKastamonu UniversityKastamonuTürkiye
| | - Adem Kara
- Department of Genetics, Faculty of ScienceErzurum Technical UniversityErzurumTürkiye
| |
Collapse
|
4
|
Bolat M, Tekin S, Bolat İ, Atasever A, Çinar B, Dağ Y, Şengül E, Yildirim S, Warda M, Çelebi F. Gallic acid's protective mechanisms against acrylamide-induced pulmonary injury: in vivo and in silico insights into the Nrf-2/HO-1/NFκB pathway modulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03996-1. [PMID: 40072556 DOI: 10.1007/s00210-025-03996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Acrylamide (ACR) is a toxic compound formed during the heating of tobacco and starchy foods, contributing to increased reactive oxygen species (ROS) levels and significant health risks. This study evaluates the protective effects of gallic acid (GA), a natural polyphenol with potent antioxidant and anti-inflammatory properties, against ACR-induced lung injury. Fifty male rats were divided into five groups: Control, ACR, GA50 + ACR, GA100 + ACR, and GA100. Lung tissues were analyzed biochemically, histopathologically, immunohistochemically, and via immunofluorescence. GA exhibited dose-dependent protective effects by enhancing antioxidant defenses through Nrf-2 (43% increase) and HO-1 activation and reducing lipid peroxidation markers (MDA decreased by 38%). GA also suppressed pro-inflammatory mediators (TNF-α reduced by 35%) and restored anti-inflammatory levels by modulating the NF-κB pathway. Furthermore, GA reduced apoptosis (Caspase-3 activity decreased by 30%) and preserved lung tissue integrity by mitigating oxidative DNA damage (8-OHdG levels reduced by 29%) and pro-apoptotic signaling (Bax levels reduced by 34%). Computational analyses demonstrated GA's interaction with the KEAP1 protein, supporting its role in activating the KEAP1-Nrf2 pathway. These findings highlight GA's antioxidant, anti-inflammatory, and anti-apoptotic properties, suggesting its therapeutic potential for protecting against ACR-induced lung injury and paving the way for future research in lung health and toxicology.
Collapse
Affiliation(s)
- Merve Bolat
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey.
| | - Samet Tekin
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey.
| | - Aslıhan Atasever
- Veterinary Medicine, Çayırlı Vocational High School, Erzincan University, Erzincan, Turkey.
| | - Burak Çinar
- Department of Pharmacology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Yusuf Dağ
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Emin Şengül
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fikret Çelebi
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| |
Collapse
|
5
|
Dag Y, Yildirim S, Sengul E, Aykurt F, Gok M, Cinar A. Therapeutic role of melatonin on acrylamide-induced neurotoxicity via reducing ER stress, inflammation, and apoptosis in a rat model. BMC Pharmacol Toxicol 2025; 26:57. [PMID: 40069873 PMCID: PMC11899690 DOI: 10.1186/s40360-025-00900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
This study examined the antioxidant, anti-inflammatory, and neuroprotective effects of melatonin (MEL) against acrylamide (ACR)-induced neurotoxicity in Sprague-Dawley rats. The experimental groups included control, ACR, MEL10+ACR, MEL20+ACR, and MEL20. MEL at doses of 10 and 20 mg/kg, and ACR at 50 mg/kg, were administered intraperitoneally for 14 days. On the 15th day, locomotor activity was assessed, and brain tissues were analyzed biochemically, molecularly, and histopathologically. ACR exposure decreased locomotor activity, increased malondialdehyde (MDA) and reduced glutathione (GSH) levels, indicating oxidative stress, and decreased antioxidant enzyme activities (SOD, GPx, CAT). High-dose MEL (MEL20+ACR) effectively reduced lipid peroxidation and restored antioxidant enzyme activities. MEL treatment also suppressed proinflammatory cytokines (TNF-α, IL-1β, IL-6) and neuronal nitric oxide synthase (nNOS), demonstrating anti-inflammatory effects. Furthermore, MEL mitigated ACR-induced neurotoxicity by reducing acetylcholinesterase (AChE) and monoamine oxidase (MAO) levels. ER stress markers (GRP78, ATF4, ATF6, sXBP1, CHOP) and apoptotic markers (Bax, Caspase-3) were elevated following ACR exposure but were suppressed by MEL. Additionally, MEL reduced ACR-induced increases in 8-hydroxy-2-deoxyguanosine (8-OHdG) and glial fibrillary acidic protein (GFAP), markers of DNA damage and astrocyte activation, respectively. These findings underscore the potential of MEL to counteract ACR-induced neurotoxicity through its comprehensive antioxidant, anti-inflammatory, and neuroprotective actions.
Collapse
Affiliation(s)
- Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
| | - Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Furkan Aykurt
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Melahat Gok
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ali Cinar
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
6
|
Atia MM, Badr EL-Deen AA, Abdel-Tawab H, Alghriany A. Rehabilitation of N, N'-methylenebisacrylamide-induced DNA destruction in the testis of adult rats by adipose-derived mesenchymal stem cells and conditional medium. Heliyon 2024; 10:e40380. [PMID: 39669145 PMCID: PMC11636104 DOI: 10.1016/j.heliyon.2024.e40380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Environmental pollutant acrylamide has toxic effect on human health. Numerous industries such as the paper, and cosmetics, use acrylamide in their manufacturing. In certain foods, acrylamide arises at extremely high temperatures. Mesenchymal stem cells can shield different tissues from the damaging effects of free radicals induced by acrylamide. This study aimed to compare the therapeutic efficacy against acrylamide-induced toxicity between adipose-derived mesenchymal stem cells (MSCs) and their conditioned media (CM), evaluating which is more effective. Seventy adult male rats were employed in this study, distributed among 5 groups. The control group consisted of 10 rats, while each of the other four groups comprised 15 rats. The AC group received a daily oral acrylamide (AC) dosage of 3 mg/kg. In the AC + AD-MSCs and AC + AD-MSCs CM groups, after 4 weeks of AC administration, rats were injected with 0.65 × 106 AD-MSCs/0.5 ml PBS and 0.5 ml of AD-MSCs CM, respectively, via the caudal vein, and were observed for 15 days. The recovery group (Rec.), subjected to 4 weeks of AC treatment, and was allowed an additional 15 days for recuperation. The result in AC and Rec. groups revealed elevated DNA damage, P53 protein levels, apoptosis, LPO, and testosterone (free and total). In contrast, the administration of CM and the transplanting of AD-MSCs decreased the levels of these proteins. According to histological analysis, treating testicular cells with AD-MSCs mitigated histopathological lesions, fibrosis, and toxicity caused by AC. The regulation of P53, LPO protein levels, and testosterone levels, supported the function of AD-MSCs in lowering testis DNA damage and apoptosis.
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
- Department of Biology, Faculty of Biotechnology, Badr University in Assiut (BUA), Egypt
| | - Aya Ahmed Badr EL-Deen
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Hanem.S. Abdel-Tawab
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Alshaimaa.A.I. Alghriany
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| |
Collapse
|
7
|
Ajibare AJ, Odetayo AF, Akintoye OO, Olayaki LA. Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway. Redox Rep 2024; 29:2341537. [PMID: 38629506 PMCID: PMC11025409 DOI: 10.1080/13510002.2024.2341537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1β and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Lead City University, Ibadan, Nigeria
| | | | - Olabode Oluwadare Akintoye
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | |
Collapse
|
8
|
Baraka SM, Hussien YA, Ahmed-Farid OA, Hassan A, Saleh DO. Acrylamide-induced hypothalamic-pituitary-gonadal axis disruption in rats: Androgenic protective roles of apigenin by restoring testicular steroidogenesis through upregulation of 17β-HSD, CYP11A1 and CYP17A1. Food Chem Toxicol 2024; 194:115078. [PMID: 39515511 DOI: 10.1016/j.fct.2024.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Acrylamide (ARL) exposure induces significant toxicity to the hypothalamic-pituitary-gonadal (HPG) axis, leading to detrimental effects on behavior, neuroendocrine functions, steroidogensis, oxidative stress, inflammation, hormonal balance, sperm quality, and histopathological integrity in rats. This study investigates the protective role of oral apigenin (API; 10 or 20 mg/kg/day for 28 days) against ARL-induced toxicity in the HPG axis of male Wistar rats. Behavioral assessments revealed that ARL exposure impaired motor coordination and balance, as evidenced by increased landing foot splay distance and gait score. ARL-induced toxicity elevated brain Tau protein levels and disrupted hypothalamic GnRH levels, both mitigated by API. ARL triggered oxidative/nitrosative stress, reducing GSH contents and increasing MDA and NO levels in brain and testicular tissues, which were reversed by API. Hormonal imbalance, marked by decreased serum testosterone, FSH, and LH levels, was corrected by API. API enhanced semen quality parameters, with elevation in sperm count concentration and the percentages of both progressive motility and individual motility. It also normalized testicular PS and PC content, enhanced testicular cellular energy and restored seminal amino acid. The repression of testicular steroidogenesis-related enzymes CYP11A1, CYP17A1, and 17β-HSD following ARL exposure was alleviated by API administration. API also mitigated the inflammatory effects of ARL by reducing the expression of p-NF-κB p65 and TNF-α in testicular tissue. Histopathological examinations showed that API reduced neuronal and testicular degeneration, improving spermatogenesis. These findings suggest that API confers significant protective effects against ARL-induced HPG axis toxicity by restoring testicular steroidogenesis through the upregulation of 17β-HSD, CYP11A1, and CYP17A1, potentially due to its antioxidant, anti-inflammatory, and neuroprotective properties.
Collapse
Affiliation(s)
- Sara M Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt
| | - Yosra A Hussien
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
9
|
Guo Z, Feng X, He G, Yang H, Zhong T, Xiao Y, Yu X. Using bioactive compounds to mitigate the formation of typical chemical contaminants generated during the thermal processing of different food matrices. Compr Rev Food Sci Food Saf 2024; 23:e13409. [PMID: 39137003 DOI: 10.1111/1541-4337.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 01/04/2025]
Abstract
With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.
Collapse
Affiliation(s)
- Zilong Guo
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huanqi Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
10
|
Cheng J, Yang L, Zhang Z, Xu D, Hua R, Chen H, Li X, Duan J, Li Q. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116562. [PMID: 38850704 DOI: 10.1016/j.ecoenv.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.
Collapse
Affiliation(s)
- Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Rongmao Hua
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518000, China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xiaoya Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaxin Duan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Kankılıç NA, Küçükler S, Gür C, Akarsu SA, Akaras N, Şimşek H, İleritürk M, Kandemir FM. Naringin protects against paclitaxel-induced toxicity in rat testicular tissues by regulating genes in pro-inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. J Biochem Mol Toxicol 2024; 38:e23751. [PMID: 38879801 DOI: 10.1002/jbt.23751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 10/11/2024]
Abstract
Paclitaxel (PTX), which is actively used in the treatment of many types of cancer, has a toxic effect by causing increased oxidative stress in testicular tissues. Naringin (NRG) is a natural flavonoid found in plants, and its antioxidant properties are at the forefront. This study aims to investigate the protective feature of NRG in PTX-induced testicular toxicity. Thirty-five male Sprague rats were divided into five groups: control, NRG, PTX, PTX + NRG50, and PTX + NRG100. Rats were administered PTX (2 mg/kg, BW) intraperitoneally once daily for the first 5 days. Then, between the 6th and 14th days, NRG (50 and 100 mg/kg) was administered orally once a day. NRG reduced PTX-induced lipid peroxidation and increased testicular tissue antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). While NRG reduces the mRNA expression levels of nuclear factor kappa B, tumor necrosis factor-alpha, interleukin-1 beta, cyclooxygenase-2, interleukin-6, inducible-nitric oxide synthase, mitogen-activated protein kinase 14 (MAPK)14, MAPK15, c-Jun N-terminal kinase, P53, Apaf1, Caspase3, Caspase6, Caspase9, and Bax in testicular tissues; it caused an increase in Nrf2, HO-1, NQO1 and Bcl-2 levels. NRG also improved the structural and functional integrity of testicular tissue disrupted by PTX. PTX-induced sperm damage was alleviated by NRG. NRG showed a protective effect by alleviating the PTX-induced testicular toxicity by increasing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
12
|
Seify M, Abedpour N, Talebi SF, Hazari V, Mehrara M, Koohestanidehaghi Y, Shoorei H, Bhandari RK. Impacts of Acrylamide on testis and spermatozoa. Mol Biol Rep 2024; 51:739. [PMID: 38874886 DOI: 10.1007/s11033-024-09677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.
Collapse
Affiliation(s)
- Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | | | - Vajihe Hazari
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Mehrara
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Shoorei
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Tekin S, Sengul E, Yildirim S, Aksu EH, Bolat İ, Çınar B, Shadidizaji A, Çelebi F, Warda M. Molecular insights into the antioxidative and anti-inflammatory effects of P-coumaric acid against bisphenol A-induced testicular injury: In vivo and in silico studies. Reprod Toxicol 2024; 125:108579. [PMID: 38513920 DOI: 10.1016/j.reprotox.2024.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study investigated the protective effects of p-coumaric acid (PCA) against bisphenol A (BPA)-induced testicular toxicity in male rats. The rats were divided into control, BPA, BPA+PCA50, BPA+PCA100, and PCA100 groups. Following a 14-day treatment period, various analyses were conducted on epididymal sperm quality and testicular tissues. PCA exhibited dose-dependent cytoprotective, antioxidant, and anti-inflammatory effects, ameliorating the decline in sperm quality induced by BPA. The treatment elevated antioxidant enzyme activities (SOD, GPx, CAT) and restored redox homeostasis by increasing cellular glutathione (GSH) and reducing malondialdehyde (MDA) levels. PCA also mitigated BPA-induced proinflammatory responses while reinstating anti-inflammatory IL-10 levels. Apoptotic parameters (p53 and p38-MAPK) were normalized by PCA in BPA-treated testicular tissue. Immunohistochemical and immunofluorescent analyses confirmed the cytoprotective and anti-inflammatory effects of PCA, evidenced by the upregulation of HO-1, Bcl-2, and Nrf-2 and the downregulation of the proapoptotic gene Bax in BPA-induced testicular intoxication. PCA corrected the disturbance in male reproductive hormone levels and reinstated testosterone biosynthetic capacity after BPA-induced testicular insult. In silico analyses suggested PCA's potential modulation of the oxidative stress KEAP1/NRF2/ARE pathway, affirming BPA's inhibitory impact on P450scc. This study elucidates BPA's molecular disruption of testosterone biosynthesis and highlights PCA's therapeutic potential in mitigating BPA's adverse effects on testicular function, showcasing its cytoprotective, anti-inflammatory, and hormone-regulating properties. The integrated in vivo and in silico approach offers a comprehensive understanding of complex mechanisms, paving the way for future research in reproductive health and toxicology, and underscores the importance of employing BPA-free plastic wares in semen handling.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çınar
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fikret Çelebi
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Yildirim S, Sengul E, Aksu EH, Cinar İ, Gelen V, Tekin S, Dag Y. Selenium reduces acrylamide-induced testicular toxicity in rats by regulating HSD17B1, StAR, and CYP17A1 expression, oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:1402-1414. [PMID: 37987225 DOI: 10.1002/tox.23996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the effects of Selenium (Se) on testis toxicity induced by Acrylamide (ACR) in rats. In our study, 50 male adult rats were used, and the rats were divided into five groups; control, ACR, Se0.5 + ACR, Se1 + ACR, and Se1. Se and ACR treatments were applied for 10 days. On the 11th day of the experimental study, intracardiac blood samples from the rats were taken under anesthesia and euthanized. Sperm motility and morphology were evaluated. Dihydrotestosterone, FSH, and LH levels in sera were analyzed with commercial ELISA kits. MDA, GSH, TNF-α, IL-6, and IL-1β levels and SOD, GPx, and CAT, activities were measured to detect the level of oxidative stress and inflammation in rat testis tissues. Expression analysis of HSD17B1, StAR, CYP17A1, MAPk14, and P-53 as target mRNA levels were performed with Real Time-PCR System technology for each cDNA sample synthesized from rat testis RNA. Testicular tissues were evaluated by histopathological, immunohistochemical, and immunofluorescent examinations. Serum dihydrotestosterone and FSH levels decreased significantly in the ACR group compared to the control group, while LH levels increased and a high dose of Se prevented these changes caused by ACR. A high dose of Se prevented these changes caused by ACR. ACR-induced testicular oxidative stress, inflammation, apoptosis, changes in the expression of reproductive enzymes, some changes in sperm motility and morphology, DNA, and tissue damage, and Se administration prevented these pathologies caused by ACR. As a result of this study, it was determined that Se prevents oxidative stress, inflammation, apoptosis, autophagy, and DNA damage in testicular toxicity induced by ACR in rats.
Collapse
Affiliation(s)
- Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - İrfan Cinar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
16
|
Kankılıç NA, Şimşek H, Akaras N, Gür C, İleritürk M, Küçükler S, Akarsu SA, Kandemir FM. Protective effects of naringin on colistin-induced damage in rat testicular tissue: Modulating the levels of Nrf-2/HO-1, AKT-2/FOXO1A, Bax/Bcl2/Caspase-3, and Beclin-1/LC3A/LC3B signaling pathways. J Biochem Mol Toxicol 2024; 38:e23643. [PMID: 38348713 DOI: 10.1002/jbt.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Antimicrobial agent resistance has become a growing health issue across the world. Colistin (COL) is one of the drugs used in the treatment of multidrug-resistant bacteria resulting in toxic effects. Naringin (NRG), a natural flavonoid, has come to the fore as its antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of the present study was to determine whether NRG has protective effects on COL-induced toxicity in testicular tissue. Thirty-five male Spraque rats were randomly divided into five groups (n = 7 per group): Control, COL, NRG, COL + NRG 50, COL + NRG 100. COL (15 mg/kg b.w., i.p., once per/day), and NRG (50 or 100 mg/kg, oral, b.w./once per/day) were administered for 7 days. The parameters of oxidative stress, inflammation, apoptosis, and autophagic damage were evaluated by using biochemical, molecular, western blot, and histological methods in testicular issues. NRG treatment reversed the increased malondialdehyde level and reduced antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione) levels due to COL administration (p < 0.001), and oxidative stress damage was mitigated. Nuclear factor erythroid 2-related factor-2 pathway, one of the antioxidant defence systems, was stimulated by NRG (p < 0.001). NRG treatment reduced the levels of markers for the pathways of apoptotic (p < 0.001) and autophagic (p < 0.001) damages induced by COL. Sperm viability and the live/dead ratio were reduced by COL but enhanced by NRG treatment. Testicular tissue integrity was damaged by COL but showed a tendency to improve by NRG. In conclusion, COL exhibited toxic effect on testicular tissue by elevating the levels of oxidative stress, apoptosis, autophagy, inflammation, and tissue damage. NRG demonstrated a protective effect by alleviating toxic damage.
Collapse
Affiliation(s)
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Serkan A Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Aksaray University, Aksaray, Turkey
| |
Collapse
|
17
|
Zhang M, Qiang Y. Catalpol ameliorates inflammation and oxidative stress via regulating Sirt1 and activating Nrf2/HO-1 signaling against acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2023; 38:2182-2191. [PMID: 37436358 DOI: 10.1002/tox.23855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Septic acute kidney injury (SAKI) is usually caused by sepsis. It has been shown that catalpol (Cat) impairs sepsis-evoked organ dysfunction to a certain degree. The current work aims to evaluate the protective effects of Cat on SAKI and potential mechanisms in vivo and in vitro. METHODS SAKI cellular and murine model were set up using lipopolysaccharide (LPS) in vitro and in vivo. Cell apoptosis in cells was determined by TUNEL assay. Levels of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The levels of the markers of oxidative injury were evaluated by corresponding commercial kits. Protein levels were assayed via western blotting and immunohistochemistry (IHC) staining. RESULTS The results demonstrated that LPS upregulated TNF-α, IL-6, and malondialdehyde levels, and downregulated superoxide dismutase, whereas Cat treated cells have the opposite results. Functional assays displayed that Cat remarkably reversed the LPS-challenged damage as the impairment of TNF-α and IL-6 levels, oxidative stress, and the apoptosis in HK-2 cells. Moreover, knockdown of Sirtuin 1 (Sirt1) counteracted the suppressive impact of Cat on LPS-triggered inflammatory response, oxidative stress, and renal damage. Further, Cat elevated Sirt1 expression and activated the Nrf2/HO-1 signaling in LPS-engendered SAKI in vivo and in vitro. CONCLUSION Our study clearly proved that Cat protected against LPS-induced SAKI via synergic antioxidant and anti-inflammatory actions by regulating Sirt1 and Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Manli Zhang
- Department of Nephrology, Changzhou Wujin People's Hospital, Wujin Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Yanjuan Qiang
- Department of Nephrology, Changzhou Wujin People's Hospital, Wujin Clinical College of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Gao Y, Zhang D, Wang P, Qu X, Xu J, Yu Y, Zhou X. Acrylamide-induced meiotic arrest of spermatocytes in adolescent mice by triggering excessive DNA strand breaks: Potential therapeutic effects of resveratrol. Hum Exp Toxicol 2023; 42:9603271231188293. [PMID: 37550604 DOI: 10.1177/09603271231188293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Baked carbohydrate-rich foods are the main source of acrylamide (AA) in the general population and are widely consumed by teenagers. Considering the crucial development of the reproductive system during puberty, the health risks posed by AA in adolescent males have raised public concern.Methods: In this study, we exposed 3-week-old male pubertal mice to AA for 4 weeks to evaluate its effect on spermatogenesis using computer-assisted sperm analysis (CASA) and historical analysis. Flow cytometric analysis and meiocyte spreading assay were conducted to assess meiosis in mice. The expression of meiosis-related proteins and double-strand break (DSB) proteins were evaluated by immunoblot analyses. Additionally, isolated spermatocytes were used to explore the role of resveratrol in AA-induced damages of meiosis.Results: Our results showed that AA decreased the testicular and epididymal indexes, reduced sperm count and motility, and induced morphological disruption of the testes in pubertal mice. Subsequent meiotic analysis revealed that AA increased the proportion of 4C spermatocytes and decreased the proportion of 1C spermatids. The expression levels of meiosis-related proteins (SYCP3, Cyclin A1 and CDK2) were downregulated, and signaling proteins (γH2AX, p-CHK2 and p-ATM) expression levels were upregulated in AA-treated mice testes. Similar expression patterns were observed in primary spermatocytes treated with AA and these effects were reversed significantly by resveratrol.Conclusions: Our results indicate that AA induces meiotic arrest via persistent activation of DSBs, which may contribute to AA-compromised spermatogenesis. Resveratrol could serve as a potential therapeutic agent against AA-induced meiotic toxicity. These data highlight the importance of natural product supplementation for treating AA-related reproductive toxicity.
Collapse
Affiliation(s)
- Y Gao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - D Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - P Wang
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - X Qu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - J Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - X Zhou
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|