1
|
Deng Y, Feng J, Li J, Gong S, Sun S. LncRNA BDNF-AS binds to DNMT1 to suppress angiogenesis in glioma by promoting NEDD4L-mediated YAP1 ubiquitination. Mol Cell Biochem 2025:10.1007/s11010-025-05250-x. [PMID: 40119181 DOI: 10.1007/s11010-025-05250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025]
Abstract
Glioma, a highly aggressive brain tumor, is characterized by high mortality and frequent recurrence rates. Angiogenesis is a critical hallmark of glioma progression. However, the regulatory role and underlying mechanism of lncRNA brain-derived neurotrophic factor-antisense (BDNF-AS) in glioma angiogenesis remain poorly understood and warrant further investigation. Malignant characteristics of glioma cells were evaluated using CCK-8, colony formation, scratch, transwell, flow cytometry, and tube formation assays. The expression levels of genes and proteins were detected by RT-qPCR, western blot, and IHC assays. The methylation level of NEDD4-like E3 ubiquitin protein ligase (NEDD4L) was determined using MSP. The interactions among molecules were validated using RIP, ChIP, and Co-IP. Our study revealed significantly downregulated BDNF-AS expression in glioma cells. BDNF-AS overexpression markedly attenuated the malignant characteristics of glioma cells, as evidenced by decreased viability, proliferation, migration, invasion, and angiogenesis, along with increased apoptosis. These tumor-suppressive effects were significantly abrogated by NEDD4L knockdown. Mechanistically, BDNF-AS could interact with DNA methyltransferase 1 (DNMT1) expression, leading to reduced NEDD4L promoter methylation and upregulation of NEDD4L expression. Additionally, NEDD4L-mediated promotion of YAP1 ubiquitination to decline YAP1 and VEGFA expression. Finally, BDNF-AS exerted potent anti-tumor effects by mediating NEDD4L/YAP1/VEGFA axis, as demonstrated by suppressed tumor growth in glioma-bearing mice and attenuated malignant features in glioma cells. BDNF-AS suppressed cell viability, proliferation, migration, and invasion, and promoted cell apoptosis of glioma cells, attenuated angiogenesis of human umbilical vein endothelial cells (HUVECs), and tumor growth via regulating NEDD4L/YAP1/VEGFA axis.
Collapse
Affiliation(s)
- Yongwen Deng
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jixin Feng
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jiangyang Li
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shuhui Gong
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shengli Sun
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Luo X, Tai Q, Liu X, Zhou X, Li W, Liu H, Ding Z, Abudureyimu M. SQSTM1/p62 confers resistance of intrahepatic cholangiocarcinoma cells to 5-Fluorouracil by promoting Nrf2 nuclear translocation. Mol Cell Toxicol 2025. [DOI: 10.1007/s13273-024-00495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/25/2025]
|
4
|
Chen G, Pei Y, Ye Q, Xie Z, Gyawali L, Liang X. NEDD4L-mediated RASGRP2 suppresses high-glucose and oxLDL-induced vascular endothelial cell dysfunctions by activating Rap1 and R-Ras. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119844. [PMID: 39260747 DOI: 10.1016/j.bbamcr.2024.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Ras guanyl-releasing protein 2 (RASGRP2) is an important regulator mediating endothelial cell function. However, whether RASGRP2 mediates diabetes mellitus (DM)-related atherosclerosis (AS) progression by regulating endothelial cell functions is unknown. METHODS Human cardiac microvascular endothelial cells (HCMECs) were treated with high-glucose (HG) and oxidized low-density lipoprotein (oxLDL). The expression of RASGRP2 and neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) was examined by quantitative real-time PCR and western blot (WB). Cell viability, apoptosis, migration, angiogenesis were detected by CCK8 assay, flow cytometry, transwell assay and tube formation assay. ROS production and cell permeability were tested to assess cell function. Rap1 and R-Ras protein levels were examined using WB. The interaction between RASGRP2 and NEDD4L was confirmed by Co-IP assay and ubiquitination assay. Exosomes were isolated from adipose-derived MSC (ADMSC)-transfected RASGRP2 overexpression vector, and then co-cultured with HG + oxLDL-induced HCMECs. RESULTS RASGRP2 was lowly expressed in HG + oxLDL-induced HCMECs. RASGRP2 overexpression inhibited HG + oxLDL-induced HCMECs permeability, apoptosis and ROS production, while accelerated cell viability, migration and angiogenesis. NEDD4L could interact with RASGRP2 by ubiquitination, thus inhibiting RASGRP2 protein stability to degrade its expression. Functional experiments showed that NEDD4L knockdown suppressed HG + oxLDL-induced HCMECs dysfunction, while these effects were reversed by RASGRP2 downregulation. ADMSC-Exo overexpressed RASGRP2 could promote cell viability, migration and angiogenesis, while suppress permeability, apoptosis and ROS production in HG + oxLDL-induced HCMECs. CONCLUSION Our data showed that targeting NEDD4L/RASGRP2 axis or inducing RASGRP2-modified ADMSC-Exo might be the efficient strategy for alleviating DM-related AS.
Collapse
Affiliation(s)
- Guozhu Chen
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China.
| | - Yisong Pei
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China
| | - Qiaoling Ye
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China
| | - Zulong Xie
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China
| | | | - Xing Liang
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China.
| |
Collapse
|
5
|
Chen Z, Wang W, Hou J, Gao C, Song M, Zhao Z, Guan R, Chen J, Wu H, Abdul Razak SR, Han T, Zhang J, Wang L, Ahmad NH, Li X. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination. Cell Death Discov 2024; 10:473. [PMID: 39557844 PMCID: PMC11574128 DOI: 10.1038/s41420-024-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The oncogene xCT plays an indispensable role in tumor growth by protecting cancer cells from oxidative stress and ferroptosis. Emerging evidence indicated xCT function is tightly controlled by posttranslational modifications, especially ubiquitination. However, it still remains unclear what specific regulatory mechanism of xCT by ubiquitin ligases in human cancers. Here, we reported that NEDD4L, an E3 ubiquitin ligases, inhibited esophageal squamous cell carcinoma (ESCC) tumor growth and facilitated ferroptosis by ubiquitination of xCT. NEDD4L expression was declined in ESCC and was associated with tumor invasion, lymph node metastasis and distant metastasis. Silencing NEDD4L triggered ESCC tumor growth. Meanwhile, knock down of NEDD4L prevented the accumulation of ROS, elevated the level of GSH, reduced the content of MDA in ESCC cells, thereby inhibiting ferroptosis. Mechanistically, NEDD4L directly bound to the ∆CT domain of xCT through its WW and HECT domain. More importantly, NEDD4L promoted xCT degradation by facilitating its polyubiquitination in ESCC cells. Collectively, these findings suggest that NEDD4L is crucial in governing the stability of xCT and mediating ferroptosis in ESCC.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Meili Song
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zijun Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Ruirui Guan
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jingsheng Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Huicheng Wu
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
| | - Tao Han
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Junbo Zhang
- Department of Surgery, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia.
| | - Xiumin Li
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
6
|
Jin J, Wang K, Lu C, Yao C, Xie F. NEDD4L Inhibits the Proliferation and Migration of Keloid Fibroblasts by Regulating YY1 Ubiquitination-Mediated Glycolytic Metabolic Reprogramming. Exp Dermatol 2024; 33:e70008. [PMID: 39494931 DOI: 10.1111/exd.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Keloid scarring is a complex fibroproliferative disorder characterised by excessive fibroblast proliferation. Inhibition of cellular glycolysis effectively suppresses the proliferation of keloid fibroblasts (KFs). Neural precursor cell-expressed developmentally downregulated gene 4-like (NEDD4L), a ubiquitin ligase, regulates cell proliferation in different diseases. This study investigated the effects of NEDD4L on glucose metabolism, proliferation and migration in KFs. Primary KFs were isolated from keloid skin tissues obtained from patients with active-stage keloids. Cell transfection was used to upregulate or downregulate NEDD4L and Yin Yang 1 (YY1) in KFs. Protein expression was assessed by immunohistochemistry and western blotting. The viability, proliferative capacity and migration ability of KFs were evaluated using the MTT method and the EdU and wound healing assays, respectively. The regulatory effect of NEDD4L on YY1 ubiquitination was examined by coimmunoprecipitation. The interaction between YY1 and hexokinase 2 (HK2) was confirmed by a dual-luciferase reporter assay. NEDD4L was downregulated, whereas YY1 and HK2 were highly expressed in keloid tissues compared with normal skin. Overexpression of NEDD4L inhibited the proliferation and migration of KFs. NEDD4L promoted YY1 degradation in KFs by inducing its ubiquitination. Upregulation of YY1 induced glucose consumption and lactate production in KFs via the transcriptional regulation of HK2. Increased expression of YY1 reversed the reduced viability, proliferation, and migration of KFs overexpressing NEDD4L. YY1 also reversed the NEDD4L-induced inhibition of glucose consumption and lactate production in KFs. Additionally, an in vivo study confirmed the inhibitory roles of NEDD4L overexpression and YY1 knockdown in keloid formation. NEDD4L suppressed the viability, proliferation and migration of KFs by regulating YY1 ubiquitination-mediated glycolysis through HK2. These findings suggest a novel regulatory axis, NEDD4L/YY1/HK2, that mediates glucose metabolism in keloid formation.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Kai Wang
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenxi Lu
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenghao Yao
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Feng Xie
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
7
|
Wu C, Wang S, Huang T, Xi X, Xu L, Wang J, Hou Y, Xia Y, Xu L, Wang L, Huang X. NPR1 promotes cisplatin resistance by inhibiting PARL-mediated mitophagy-dependent ferroptosis in gastric cancer. Cell Biol Toxicol 2024; 40:93. [PMID: 39476297 PMCID: PMC11525271 DOI: 10.1007/s10565-024-09931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024]
Abstract
Cisplatin-based chemotherapy serves as the standard of care for individuals with advanced stages of gastric cancer. Nevertheless, the emergence of chemoresistance in GC has detrimental impacts on prognosis, yet the underlying mechanisms governing this phenomenon remain elusive. Level of mitophagy and ferroptosis of GC cells were detected by fluorescence, flow cytometry, GSH, MDA, Fe2+ assays, and to explore the specific molecular mechanisms between NPR1 and cisplatin resistance by performing western blot and coimmunoprecipitation (co-IP) assays. These results indicates that NPR1 positively correlated with cisplatin-resistance and played a crucial part in conferring resistance to cisplatin in gastric cancer cells. Mechanistically, NPR1 affected levels of mitophagy and ferroptosis in human cisplatin-resistance GC cells with cisplatin treatment. Specifically, NPR1 inhibited mitophagy-dependent ferroptosis by reducing the ubiquitination-mediated degradation of PARL; moreover, NPR1 promoted PARL stabilization by disrupting the PARL-MARCH8 complex, which ultimately led to the development of chemoresistance in GC cells. Considering our findings, NPR1 appears to play an important role in chemotherapy for GC. NPR1 could potentially be used to overcome chemotherapy resistance.
Collapse
Affiliation(s)
- Chengwei Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Tao Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xinran Xi
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Lishuai Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yinfen Hou
- Department of Medical Examination Center, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, No.2, Zheshan West Road, Wuhu, 241001, Anhui, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
| |
Collapse
|
8
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
9
|
Tang C, Lai Y, Li L, Situ MY, Li S, Cheng B, Chen Y, Lei Z, Ren Y, Zhou J, Wu Y, Zhong H, Li K, Zeng L, Guo Z, Peng S, Huang H. SERPINH1 modulates apoptosis by inhibiting P62 ubiquitination degradation to promote bone metastasis of prostate cancer. iScience 2024; 27:110427. [PMID: 39161960 PMCID: PMC11332800 DOI: 10.1016/j.isci.2024.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent urogenital malignancies. Bone metastasis from PCa reduces patient survival rates significantly. There currently exists no effective treatment for bone metastatic PCa, and the underlying mechanisms remain unclear. This study performed transcriptomic screening on PCa bone metastasis specimens and intersection analysis in public databases and identified SERPINH1 as a potential target for treatment. SERPINH1 was found to be upregulated in PCa bone metastases and with poor prognosis, high Gleason score, and advanced metastatic status. SERPINH1 induced PCa cells' bone metastasis in vivo, promoted their proliferation, and mitigated apoptosis. Mechanistically, SERPINH1 bound to P62, reducing TRIM21-mediated K63-linked ubiquitination degradation of P62 and promoting proliferation and resistance to apoptosis of PCa. This study suggests the regulation of ubiquitination degradation of P62 by SERPINH1 that promotes PCa bone metastasis and can be considered as a potential target for treatment of bone metastatic PCa.
Collapse
Affiliation(s)
- Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| | - Lingfeng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Min-yi Situ
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shurui Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Yongming Chen
- Beijing Hospital, National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, Dongcheng, P.R. China
| | - Zhen Lei
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - YanTing Ren
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Jie Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Yongxin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Haitao Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Lexiang Zeng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| |
Collapse
|
10
|
Wu L, Hu Z, Song XF, Liao YJ, Xiahou JH, Li Y, Zhang ZH. Targeting Nrf2 signaling pathways in the role of bladder cancer: From signal network to targeted therapy. Biomed Pharmacother 2024; 176:116829. [PMID: 38820972 DOI: 10.1016/j.biopha.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| | - Zhao Hu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Xiao-Fen Song
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yu-Jian Liao
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Jiang-Huan Xiahou
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yuan Li
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Zhong-Hua Zhang
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| |
Collapse
|
11
|
Liu K, Chen H, Li Y, Wang B, Li Q, Zhang L, Liu X, Wang C, Ertas YN, Shi H. Autophagy flux in bladder cancer: Cell death crosstalk, drug and nanotherapeutics. Cancer Lett 2024; 591:216867. [PMID: 38593919 DOI: 10.1016/j.canlet.2024.216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Autophagy, a self-digestion mechanism, has emerged as a promising target in the realm of cancer therapy, particularly in bladder cancer (BCa), a urological malignancy characterized by dysregulated biological processes contributing to its progression. This highly conserved catabolic mechanism exhibits aberrant activation in pathological events, prominently featured in human cancers. The nuanced role of autophagy in cancer has been unveiled as a double-edged sword, capable of functioning as both a pro-survival and pro-death mechanism in a context-dependent manner. In BCa, dysregulation of autophagy intertwines with cell death mechanisms, wherein pro-survival autophagy impedes apoptosis and ferroptosis, while pro-death autophagy diminishes tumor cell survival. The impact of autophagy on BCa progression is multifaceted, influencing metastasis rates and engaging with the epithelial-mesenchymal transition (EMT) mechanism. Pharmacological modulation of autophagy emerges as a viable strategy to impede BCa progression and augment cell death. Notably, the introduction of nanoparticles for targeted autophagy regulation holds promise as an innovative approach in BCa suppression. This review underscores the intricate interplay of autophagy with cell death pathways and its therapeutic implications in the nuanced landscape of bladder cancer.
Collapse
Affiliation(s)
- Kuan Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Huijing Chen
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Yanhong Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Bei Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Qian Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Xiaohui Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| | - Ce Wang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey.
| | - Hongyun Shi
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| |
Collapse
|
12
|
Liu B, Song F, Zhou X, Wu C, Huang H, Wu W, Li G, Wang Y. NEDD4L is a promoter for angiogenesis and cell proliferation in human umbilical vein endothelial cells. J Cell Mol Med 2024; 28:1-11. [PMID: 38526036 PMCID: PMC10962128 DOI: 10.1111/jcmm.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.
Collapse
Affiliation(s)
- Binghong Liu
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Huizhu Huang
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Yan Wang
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
13
|
Chen Y, Huang M, Lu J, Zhang Q, Wu J, Peng S, Chen S, Zhang Y, Cheng L, Lin T, Chen X, Huang J. Establishment of a prognostic model to predict chemotherapy response and identification of RAC3 as a chemotherapeutic target in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:509-528. [PMID: 37310098 DOI: 10.1002/tox.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Cisplatin-based chemotherapy is considered the primary treatment option for patients with advanced bladder cancer (BCa). However, the objective response rate to chemotherapy is often unsatisfactory, leading to a poor 5-year survival rate. Furthermore, current strategies for evaluating chemotherapy response and prognosis are limited and inefficient. In this study, we aimed to address these challenges by establishing a chemotherapy response type gene (CRTG) signature consisting of 9 genes and verified the prognostic value of this signature using TCGA and GEO BCa cohorts. The risk scores based on the CRTG signature were found to be associated with advanced clinicopathological status and demonstrated favorable predictive power for chemotherapy response in the TCGA cohort. Meanwhile, tumors with high risk scores exhibited a tendency toward a "cold tumor" phenotype. These tumors showed a low abundance of T cells, CD8+ T cells and cytotoxic lymphocytes, along with a high abundance of cancer-associated fibroblasts. Moreover, they displayed higher mRNA levels of these immune checkpoints: CD200, CD276, CD44, NRP1, PDCD1LG2 (PD-L2), and TNFSF9. Furthermore, we developed a nomogram that integrated the CRTG signature with clinicopathologic risk factors. This nomogram proved to be a more effective tool for predicting the prognosis of BCa patients. Additionally, we identified Rac family small GTPase 3 (RAC3) as a biomarker in our model. RAC3 was found to be overexpressed in chemoresistant BCa tissues and enhance the chemotherapeutic resistance of BCa cells in vitro and in vivo by regulating the PAK1-ERK1/2 pathway. In conclusion, our study presents a novel CRTG model for predicting chemotherapy response and prognosis in BCa. We also highlight the potential of combining chemotherapy with immunotherapy as a promising strategy for chemoresistant BCa and that RAC3 might be a latent target for therapeutic intervention.
Collapse
Affiliation(s)
- Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Siting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| |
Collapse
|
14
|
Liu Z, Yang LY, Hao JJ, Zhang N, Fan ZL, Cai HQ, Cai Y, Wei WQ, Zhang Y, Wang MR. Nuclear-cytoplasmic translocation of SQSTM1/p62 protein enhances ESCC cell migration and invasion by stabilizing EPLIN expression. Exp Cell Res 2024; 435:113910. [PMID: 38185251 DOI: 10.1016/j.yexcr.2023.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant disease with a poor prognosis. We previously found that p62 presented a marked nuclear-cytoplasmic translocation in ESCC cells as compared that in normal esophageal epithelial cells, but its effects on ESCC cells remain unclear. This study aims to clarify the impacts of different cellular localization of p62 on the function of ESCC cells and the underlying molecular mechanisms. We here demonstrated that cytoplasmic p62 enhances the migration and invasion abilities of esophageal cancer cells, whereas nuclear p62 has no effect. We further explored the interaction protein of p62 by using GST pull-down experiment and identified EPLIN as a potential protein interacting with p62. In addition, reducing EPLIN expression significantly inhibited the migration and invasion of ESCC cells, which were rescued when EPLIN expression was restored after the p62 knockdown. At a molecular level, p62 in cytoplasm positively regulated the expression of EPLIN via enhancing its protein stability. Data from the TCGA and GEO database displayed a significant up-regulation of EPLIN mRNA expression in ESCC tissues compared with corresponding paired esophageal epithelial samples. Our findings present evidence that the nuclear-cytoplasmic translocation of p62 protein contributes to an aggressive malignancy phenotype, providing candidate molecular biomarkers and potential molecular targets for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Zou Liu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhi-Lu Fan
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Feng T, Zhou Y, Mao X, Rui X, Cai L. Curcumol Enhances the Sensitivity of Gastric Cancer to Cisplatin Resistance by Inducing Ferroptosis Through the P62/KEAP1/NRF2 Pathway. Integr Cancer Ther 2024; 23:15347354241294043. [PMID: 39511708 PMCID: PMC11544674 DOI: 10.1177/15347354241294043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Chemoresistance represented one of the challenges in the treatment of advanced gastric cancer (GC). Curcumol (CUR) was found to have a certain sensitizing effect on chemoresistance, although the mechanism was not yet fully understood. Purpose: To clarify the ability of CUR to intervene in the sensitivity of GC cells to Cisplatin (CDDP) by regulating the induction of ferroptosis through the P62/KEAP1/NRF2 pathway. Methods: An in vitro resistant cell line was established and treated with CUR for intervention. The synergy was evaluated using synergyfinder3.0 software. The impact of the combined use of CUR and CDDP on the proliferation, migration, and invasion of resistant GC cells was determined. The effect of CUR on ferroptosis in resistant GC cell lines was evaluated by measuring changes in reactive oxygen species (ROS) levels, malondialdehyde (MDA) levels, iron ion levels, and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Western blotting was used to verify the expression changes of the ferroptosis-related indicator GPX4 and the differential expression of the antioxidant-related pathway P62/KEAP1/NRF2, validating the mechanism by which CUR induces ferroptosis in resistant GC cells. In vivo validation was performed using a xenograft mouse model. Results: The evaluation by synergy3.0 revealed a synergistic effect between CUR and CDDP. After treatment with CUR and CDDP, resistant GC cell lines exhibited reduced proliferation, migration, and invasion capabilities. Furthermore, the resistant GC cell lines underwent ferroptosis, with significant changes observed in ferroptosis-related indicators such as ROS, MDA, iron ions, and GSH/GSSG. The ferroptosis-related targets Glutathione Peroxidase 4 (GPX4) and the antioxidant pathway P62/KEAP1/NRF2 signaling pathway also showed significant changes. In in vivo validation, the combination of CUR and CDDP inhibited the growth of subcutaneous tumors and was found to be associated with the inhibition of subcutaneous xenografts and the GPX4 and P62/KEAP1/NRF2 signaling pathways. Conclusion: This study first revealed that CUR enhanced the sensitivity of cisplatin-resistant GC cells to CDDP by inducing ferroptosis. The combination of CUR and CDDP induces ferroptosis in cisplatin-resistant GC through the P62/KEAP1/NRF2 pathway.
Collapse
Affiliation(s)
- Tongfei Feng
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanlin Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xiangying Mao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Hangzhou Lin’an Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaowei Rui
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Huzhou First People’s Hospital, Huzhou, Zhejiang, China
| | - Lijun Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Lin L, Wu Q, Lu F, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Ning Z, She T, Hu M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol 2023; 13:1184079. [PMID: 37810967 PMCID: PMC10559910 DOI: 10.3389/fonc.2023.1184079] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|