1
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang X, Xu W, Wang Z, Liu J, Gong H, Zou W. Cross-talk between cuproptosis and ferroptosis to identify immune landscape in cervical cancer for mRNA vaccines development. Eur J Med Res 2024; 29:602. [PMID: 39696618 DOI: 10.1186/s40001-024-02191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Messenger RNA (mRNA)-based vaccines present a promising avenue for cancer immunotherapy; however, their application in cervical cancer remains unexplored. This study investigated the interplay between the regulated cell death pathways of cuproptosis and ferroptosis to advance the development of mRNA vaccines for cervical cancer. We identified key cuproptosis-related and ferroptosis-related genes (CFRGs) from public mRNA profiles and determined their prognostic significance, mutation frequencies, and effect on the immune landscape. Our analysis revealed two distinct subtypes of cervical cancer associated with CFRGs, with differences in prognosis and immune characteristics. Using LASSO, XGBoost, and SVM-RFE methods, we established a 4-gene prognostic signature (TSC22D3, SQLE, ZNF419, and TFRC) to stratify patients based on their risk and determine its correlation with immune microenvironment, mutation profiles, and treatment responses. RT-qPCR validation confirmed the differential expression of these genes in clinical samples. Our findings identify TSC22D3, SQLE, ZNF419, and TFRC as candidate targets for mRNA vaccine development and offer a potential prognostic tool for personalized cervical cancer treatment.
Collapse
Affiliation(s)
- Xuchao Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Wenwen Xu
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Zi Wang
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Jing Liu
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Han Gong
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China.
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China.
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China.
| |
Collapse
|