1
|
Li X, Yang Y, Jiao F, Tang G, Chen M, Yao R, Zhao Y, Liang X, Shen B, Sun Y, Wu J, Wang J, Liu F. Rapid Cognitive Deterioration in Progressive Supranuclear Palsy: A 1-Year Follow-Up Study. Mov Disord Clin Pract 2025; 12:475-483. [PMID: 39728024 PMCID: PMC11998687 DOI: 10.1002/mdc3.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/29/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Nowadays, cognitive impairment has been characterized as one of the most vital clinical symptoms in progressive supranuclear palsy (PSP). OBJECTIVES Based on a relatively large cohort, we aimed to show the cognitive deterioration in different PSP subtypes during 1-year follow-up and investigate potential contributors for disease prognosis. METHODS One hundred seventeen patients from Progressive Supranuclear Palsy Neuroimage Initiative (PSPNI) cohort underwent neuropsychological tests and 1-year follow-up, with 73 diagnosed as PSP-Richardson syndrome (PSP-RS) and 44 as PSP-non-RS. Patients were divided into normal cognition (PSP-NC), mild cognitive impairment (PSP-MCI), and PSP-dementia. Cognitive impairment and progression rates were compared between PSP-RS and PSP-non-RS, and determinants for MCI conversion to dementia were calculated by multiple cox regression. RESULTS At baseline, 30.8% of PSP patients were diagnosed as dementia, 53.0% as MCI, and only 16.2% as NC. Compared to PSP-non-RS, PSP-RS suffered more from motor symptoms and cognitive impairment. During follow-up, PSP-RS also exhibited faster disease progression in Mini-Mental State Examination and visuospatial function, with cognitive deterioration in attention and executive function, but retained in language and memory subdomains. Twenty-seven of 62 PSP-MCI patients converted to dementia during follow-up, with the diagnosis of RS subtype as the most significant contributor to conversion (hazard ration = 2.993, 95% confidence interval = 1.451, 5.232, P = 0.009). CONCLUSIONS Patients with PSP-RS showed more severe cognitive impairment and faster decline longitudinally than patients with PSP-non-RS. Additionally, the diagnosis of RS subtype appears to be the most contributed factor for MCI conversion to dementia within just 1-year follow-up period.
Collapse
Affiliation(s)
- Xin‐Yi Li
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yu‐Jie Yang
- Fundamental Research CenterShanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji UniversityShanghaiChina
| | - Fang‐Yang Jiao
- PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Gan Tang
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Ming‐Jia Chen
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Rui‐Xin Yao
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yi‐Xin Zhao
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Xiao‐Niu Liang
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
- Institute of Neurology, Fudan UniversityShanghaiChina
| | - Bo Shen
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yi‐Min Sun
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Jian‐Jun Wu
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Jian Wang
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Feng‐Tao Liu
- Department of NeurologyNational Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan UniversityShanghaiChina
| | | |
Collapse
|
2
|
Lam TG, Ross SK, Ciener B, Xiao H, Flaherty D, Lee AJ, Dugger BN, Reddy H, Teich AF. Pathologic subtyping of Alzheimer's disease brain tissue reveals disease heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.14.24315458. [PMID: 39484271 PMCID: PMC11527055 DOI: 10.1101/2024.10.14.24315458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In recent years, multiple groups have shown that what is currently thought of as "Alzheimer's Disease" (AD) may be usefully viewed as several related disease subtypes. As these efforts have continued, a related issue is how common co-pathologies and ethnicity intersect with AD subtypes. The goal of this study was to use a dataset constituting 153 pathologic variables recorded on 666 AD brain autopsies to better define how co-pathologies and ethnicity relate to established AD subtypes. Pathologic clustering suggests 8 subtypes within this cohort, and further analysis reveals that the previously described continuum from hippocampal predominant to hippocampal sparing is well represented in our data. Small vessel disease is overall highest in a cluster with a low hippocampal/cortical tau ratio, and across all clusters small vessel disease segregates separately from Lewy body disease. Two AD clusters are identified with extensive Lewy bodies outside amygdala (one with a high hippocampal/cortical tau ratio and one with a low ratio), and we find an inverse relationship between cortical tau and Lewy body pathology across these two clusters. Finally, we find that brains from persons of Hispanic descent have significantly more AD pathology in multiple neuroanatomic areas. We find that Hispanic ethnicity is not uniformly distributed across clusters, and this is particularly pronounced in clusters with significant Lewy body pathology, where Hispanic donors are only found in a cluster with a low hippocampal/cortical tau ratio. In summary, our analysis of recorded pathologic data across two decades of banked brains reveals new relationships in the patterns of AD-related proteinopathy, co-pathology, and ethnicity, and highlights the utility of pathologic subtyping to classify AD pathology.
Collapse
Affiliation(s)
- Tiffany G. Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sophie K. Ross
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Ciener
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Delaney Flaherty
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Hasini Reddy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Pina‐Escudero SD, La Joie R, Spina S, Hwang J, Miller ZA, Huang EJ, Grant H, Mundada NS, Boxer AL, Gorno‐Tempini ML, Rosen HJ, Kramer JH, Miller BL, Seeley WW, Rabinovici GD, Grinberg LT. Comorbid neuropathology and atypical presentation of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12602. [PMID: 39040464 PMCID: PMC11262028 DOI: 10.1002/dad2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) neuropathological changes present with amnestic and nonamnestic (atypical) syndromes. The contribution of comorbid neuropathology as a substratum of atypical expression of AD remains under investigated. METHODS We examined whether atypical AD exhibited increased comorbid neuropathology compared to typical AD and if such neuropathologies contributed to the accelerated clinical decline in atypical AD. RESULTS We examined 60 atypical and 101 typical AD clinicopathological cases. The number of comorbid pathologies was similar between the groups (p = 0.09). Argyrophilic grain disease was associated with atypical presentation (p = 0.008) after accounting for sex, age of onset, and disease duration. Vascular brain injury was more common in typical AD (p = 0.022). Atypical cases had a steeper Mini-Mental Status Examination (MMSE) decline over time (p = 0.033). DISCUSSION Comorbid neuropathological changes are unlikely to contribute to atypical AD presentation and the steeper cognitive decline seen in this cohort. Highlights Autopsy cohort of 60 atypical and 101 typical AD; does comorbid pathology explain atypical presentation?Atypical versus Typical AD: No significant differences in comorbid neuropathologies were found (p = 0.09).Argyrophilic Grain Disease Association: significantly correlates with atypical AD presentations, suggesting a unique neuropathological pattern (p = 0.008).Vascular Brain Injury Prevalence: Vascular brain injury is more common in typical AD than in atypical AD (p = 0.022).Cognitive Decline in Atypical AD: Atypical AD patients experience a steeper cognitive decline measured by MMSE than those with typical AD despite lacking more comorbid neuropathology, highlighting the severity of atypical AD pathogenesis (p = 0.033).
Collapse
Affiliation(s)
- Stefanie D. Pina‐Escudero
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ji‐Hye Hwang
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Zachary A. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Eric J. Huang
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Harli Grant
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Nidhi S. Mundada
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Maria Luisa Gorno‐Tempini
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lea Tenenholz Grinberg
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of Sao PauloSao PauloSao PauloBrazil
| |
Collapse
|
4
|
Kamondi A, Grigg-Damberger M, Löscher W, Tanila H, Horvath AA. Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 2024; 20:162-182. [PMID: 38356056 DOI: 10.1038/s41582-024-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline. Thus, detection of epileptiform activity in AD has substantial clinical importance as a potential novel modifiable risk factor for dementia. In this Review, we summarize the epidemiological evidence for the complex bidirectional relationship between AD and epilepsy, examine the effect of epileptiform activity and seizures on cognition in people with AD, and discuss the precision medicine treatment strategies based on the latest research in human and animal models. Finally, we outline some of the unresolved questions of the field that should be addressed by rigorous research, including whether particular clinicopathological subtypes of AD have a stronger association with epilepsy, and the sequence of events between epileptiform activity and amyloid and tau pathology.
Collapse
Affiliation(s)
- Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| | | | - Wolfgang Löscher
- Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Andras Attila Horvath
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Kang M, Ang TFA, Devine SA, Sherva R, Mukherjee S, Trittschuh EH, Gibbons LE, Scollard P, Lee M, Choi SE, Klinedinst B, Nakano C, Dumitrescu LC, Durant A, Hohman TJ, Cuccaro ML, Saykin AJ, Kukull WA, Bennett DA, Wang LS, Mayeux RP, Haines JL, Pericak-Vance MA, Schellenberg GD, Crane PK, Au R, Lunetta KL, Mez JB, Farrer LA. A genome-wide search for pleiotropy in more than 100,000 harmonized longitudinal cognitive domain scores. Mol Neurodegener 2023; 18:40. [PMID: 37349795 PMCID: PMC10286470 DOI: 10.1186/s13024-023-00633-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND More than 75 common variant loci account for only a portion of the heritability for Alzheimer's disease (AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations with AD-related endophenotypes. METHODS We conducted genome-wide scans for cognitive domain performance using harmonized and co-calibrated scores derived by confirmatory factor analyses for executive function, language, and memory. We analyzed 103,796 longitudinal observations from 23,066 members of community-based (FHS, ACT, and ROSMAP) and clinic-based (ADRCs and ADNI) cohorts using generalized linear mixed models including terms for SNP, age, SNP × age interaction, sex, education, and five ancestry principal components. Significance was determined based on a joint test of the SNP's main effect and interaction with age. Results across datasets were combined using inverse-variance meta-analysis. Genome-wide tests of pleiotropy for each domain pair as the outcome were performed using PLACO software. RESULTS Individual domain and pleiotropy analyses revealed genome-wide significant (GWS) associations with five established loci for AD and AD-related disorders (BIN1, CR1, GRN, MS4A6A, and APOE) and eight novel loci. ULK2 was associated with executive function in the community-based cohorts (rs157405, P = 2.19 × 10-9). GWS associations for language were identified with CDK14 in the clinic-based cohorts (rs705353, P = 1.73 × 10-8) and LINC02712 in the total sample (rs145012974, P = 3.66 × 10-8). GRN (rs5848, P = 4.21 × 10-8) and PURG (rs117523305, P = 1.73 × 10-8) were associated with memory in the total and community-based cohorts, respectively. GWS pleiotropy was observed for language and memory with LOC107984373 (rs73005629, P = 3.12 × 10-8) in the clinic-based cohorts, and with NCALD (rs56162098, P = 1.23 × 10-9) and PTPRD (rs145989094, P = 8.34 × 10-9) in the community-based cohorts. GWS pleiotropy was also found for executive function and memory with OSGIN1 (rs12447050, P = 4.09 × 10-8) and PTPRD (rs145989094, P = 3.85 × 10-8) in the community-based cohorts. Functional studies have previously linked AD to ULK2, NCALD, and PTPRD. CONCLUSION Our results provide some insight into biological pathways underlying processes leading to domain-specific cognitive impairment and AD, as well as a conduit toward a syndrome-specific precision medicine approach to AD. Increasing the number of participants with harmonized cognitive domain scores will enhance the discovery of additional genetic factors of cognitive decline leading to AD and related dementias.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
| | - Ting Fang Alvin Ang
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Sherral A. Devine
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Emily H. Trittschuh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA USA
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Michael Lee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Seo-Eun Choi
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Brandon Klinedinst
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Connie Nakano
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Alaina Durant
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL USA
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Services, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, WA USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Richard P. Mayeux
- Department of Neurology, Columbia University School of Medicine, New York, NY USA
| | - Jonathan L. Haines
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Kathryn L. Lunetta
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Jesse B. Mez
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| |
Collapse
|
6
|
Kim B, Suh E, Nguyen AT, Prokop S, Mikytuck B, Olatunji OA, Robinson JL, Grossman M, Phillips JS, Irwin DJ, Mechanic-Hamilton D, Wolk DA, Trojanowski JQ, McMillan CT, Van Deerlin VM, Lee EB. TREM2 risk variants are associated with atypical Alzheimer's disease. Acta Neuropathol 2022; 144:1085-1102. [PMID: 36112222 PMCID: PMC9643636 DOI: 10.1007/s00401-022-02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) has multiple clinically and pathologically defined subtypes where the underlying causes of such heterogeneity are not well established. Rare TREM2 variants confer significantly increased risk for clinical AD in addition to other neurodegenerative disease clinical phenotypes. Whether TREM2 variants are associated with atypical clinical or pathologically defined subtypes of AD is not known. We studied here the clinical and pathological features associated with TREM2 risk variants in an autopsy-confirmed cohort. TREM2 variant cases were more frequently associated with non-amnestic clinical syndromes. Pathologically, TREM2 variant cases were associated with an atypical distribution of neurofibrillary tangle density with significantly lower hippocampal NFT burden relative to neocortical NFT accumulation. In addition, NFT density but not amyloid burden was associated with an increase of dystrophic microglia. TREM2 variant cases were not associated with an increased prevalence, extent, or severity of co-pathologies. These clinicopathological features suggest that TREM2 variants contribute to clinical and pathologic AD heterogeneity by altering the distribution of neurofibrillary degeneration and tau-dependent microglial dystrophy, resulting in hippocampal-sparing and non-amnestic AD phenotypes.
Collapse
Affiliation(s)
- Boram Kim
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Aivi T Nguyen
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Bailey Mikytuck
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Olamide A Olatunji
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn Mechanic-Hamilton
- Department of Neurology, Penn Memory Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Penn Memory Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Iturria-Medina Y, Adewale Q, Khan AF, Ducharme S, Rosa-Neto P, O’Donnell K, Petyuk VA, Gauthier S, De Jager PL, Breitner J, Bennett DA. Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer's disease progression and heterogeneity. SCIENCE ADVANCES 2022; 8:eabo6764. [PMID: 36399579 PMCID: PMC9674284 DOI: 10.1126/sciadv.abo6764] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a heterogeneous disorder with abnormalities in multiple biological domains. In an advanced machine learning analysis of postmortem brain and in vivo blood multi-omics molecular data (N = 1863), we integrated epigenomic, transcriptomic, proteomic, and metabolomic profiles into a multilevel biological AD taxonomy. We obtained a personalized multilevel molecular index of AD dementia progression that predicts severity of neuropathologies, and identified three robust molecular-based subtypes that explain much of the pathologic and clinical heterogeneity of AD. These subtypes present distinct patterns of alteration in DNA methylation, RNA, proteins, and metabolites, identifiable in the brain and subsequently in blood. In addition, the genetic variations that predispose to the various AD subtypes in brain predict distinct spatial patterns of alteration in cell types, suggesting a unique influence of each putative AD variant on neuropathological mechanisms. These observations support that an individually tailored multi-omics molecular taxonomy of AD may represent distinct targets for preventive or treatment interventions.
Collapse
Affiliation(s)
- Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Quadri Adewale
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Ahmed F. Khan
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Kieran O’Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
- Yale School of Medicine, New Haven, CT 06519, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - John Breitner
- Centre for Studies on Prevention of Alzheimer’s Disease (StoP-AD), Douglas Research Centre, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|