1
|
Han MP, Ferreira AEGDMT, Elhindi J, McLennan AC, Scott F. How Useful is Nuchal Translucency in Detecting Chromosomal Abnormalities Missed by Genome-Wide NIPT and What Measurement Threshold Should Be Used? Prenat Diagn 2025; 45:147-154. [PMID: 39754320 PMCID: PMC11790515 DOI: 10.1002/pd.6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION Genome-wide non-invasive prenatal testing (gwNIPT) has screening limitations for detectable genetic conditions and cannot detect microdeletions/microduplications (MD) or triploidy. Nuchal translucency (NT) increases with gestation and with genetic or structural abnormalities. This study aims to determine the utility of NT measurement in detecting genetic abnormalities not identified by gwNIPT and the optimal NT threshold value. METHODS A 4-year retrospective study of singleton pregnancies undergoing first-line gwNIPT aneuploidy screening where invasive prenatal testing by CVS/or amniocentesis was subsequently undertaken. Population proportions for static and multiple of the median (MoM) NT cut-offs were derived from all 11-14 weeks ultrasound examinations. RESULTS Among 919 pregnancies with gwNIPT and invasive testing, 338 had a single genetic abnormality. There were 9 false negative GwNIPT results and a further 26 undetectable abnormalities (18 MD, 8 triploidy) in this cohort. Twelve had a dual chromosomal abnormality, four of which returned a low-risk gwNIPT. Thirty-three "missed cases" also had a 13-week scan, to which the various NT threshold values (3.0 mm, 1.6 MoM, 3.5 mm, and 1.9 MoM) were applied. In only 3 (9%) cases did the NT exceed 3.0 mm with similar detection rates (DR) for all higher cut-offs. Static and MoM-based NT cut-offs had similar positive predictive values (PPV). CONCLUSION Enlarged NT measurement is a poor predictor of genetic abnormalities not identified by gwNIPT. When applied, the fixed NT cut-off of 3.5 mm provides a low FPR with a similar DR to lower cut-off thresholds, resulting in a higher PPV.
Collapse
Affiliation(s)
- May Phoo Han
- Discipline of Women's HealthUniversity of New South WalesRandwickAustralia
| | | | - James Elhindi
- Women's & Newborn Health DepartmentWestmead HospitalWestmeadAustralia
| | - Andrew C. McLennan
- Sydney Ultrasound for WomenSydneyAustralia
- Discipline of Obstetrics, Gynaecology and NeonatologyUniversity of SydneySydneyAustralia
| | - Fergus Scott
- Discipline of Women's HealthUniversity of New South WalesRandwickAustralia
- Sydney Ultrasound for WomenSydneyAustralia
| |
Collapse
|
2
|
Li N, Sun Y, Cheng L, Feng C, Sun Y, Yang S, Shao Y, Zhao XZ, Zhang Y. Non-Invasive Prenatal Diagnosis of Chromosomal and Monogenic Disease by a Novel Bioinspired Micro-Nanochip for Isolating Fetal Nucleated Red Blood Cells. Int J Nanomedicine 2024; 19:13445-13460. [PMID: 39713222 PMCID: PMC11662655 DOI: 10.2147/ijn.s479297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Purpose Fetal nucleated red blood cells (fNRBCs) in the peripheral blood of pregnant women contain comprehensive fetal genetic information, making them an ideal target for non-invasive prenatal diagnosis (NIPD). However, challenges in identifying, enriching, and detecting fNRBCs limit their diagnostic potential. Methods To overcome these obstacles, we developed a novel biomimetic chip, replicating the micro-nano structure of red rose petals on polydimethylsiloxane (PDMS). The surface was modified with gelatin nanoparticles (GNPs) and affinity antibodies to enhance cell adhesion and facilitate specific cell identification. We subsequently investigated the chip's characteristics, along with its in vitro capture and release system, and conducted further experiments using peripheral blood samples from pregnant women. Results In the cell line capture and release assay, the chip achieved a cell capture efficiency of 90.4%. Following metalloproteinase-9 (MMP-9) enzymatic degradation, the release efficiency was 84.08%, with cell viability at 85.97%. Notably, fNRBCs can be captured from the peripheral blood of pregnant women as early as 7 weeks of gestation. We used these fNRBCs to diagnose a case of single-gene disease and instances of chromosomal aneuploidies, yielding results consistent with those obtained from amniotic fluid punctures. Conclusion This novel chip not only enables efficient enrichment of fNRBCs for NIPD but also extends the diagnostic window for genetic and developmental disorders to as early as 7 weeks of gestation, potentially allowing for earlier interventions. By improving the accuracy and reliability of NIPD, this technology could reduce reliance on invasive diagnostic techniques, offering a new pathway for diagnosing fetal genetic conditions in clinical practice.
Collapse
Affiliation(s)
- Naiqi Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Genetics and Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People’s Republic of China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People’s Republic of China
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, People’s Republic of China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Chun Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430072, People’s Republic of China
| | - Yifan Sun
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Saisai Yang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Yuqi Shao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
3
|
Wójtowicz A, Kowalczyk K, Szewczyk K, Madetko-Talowska A, Wójtowicz W, Huras H, Bik-Multanowski M, Beata N. Array Comparative Genomic Hybridization (aCGH) Results among Patients Referred to Invasive Prenatal Testing after First-Trimester Screening: A Comprehensive Cohort Study. Diagnostics (Basel) 2024; 14:2186. [PMID: 39410589 PMCID: PMC11475562 DOI: 10.3390/diagnostics14192186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Invasive prenatal testing with chromosomal microarray analysis after first-trimester screening is a relevant option but there is still debate regarding the indications. Therefore, we evaluated the prevalence of numerical chromosomal aberrations detected by classic karyotype and clinically relevant copy number variants (CNVs) in prenatal samples using array comparative genomic hybridization (aCGH) stratified to NT thickness: 4.5 mm, and by the presence/absence of associated structural anomalies detected by ultrasonography. Materials and Methods: Retrospective cohort study carried out at two tertiary Polish centers for prenatal diagnosis (national healthcare system) in central and south regions from January 2018 to December 2021. A total of 1746 prenatal samples were received. Indications for invasive prenatal testing included high risk of Down syndrome in the first-trimester combined test (n = 1484) and advanced maternal age (n = 69), and, in 193 cases, other reasons, such as parental request, family history of congenital defects, and genetic mutation carrier, were given. DNA was extracted directly from amniotic fluid (n = 1582) cells and chorionic villus samples (n = 164), and examined with classic karyotype and aCGH. Results: Of the entire cohort of 1746 fetuses, classical karyotype revealed numerical chromosomal aberrations in 334 fetuses (19.1%), and aCGH detected CNV in 5% (n = 87). The frequency of numerical chromosomal aberrations increased with NT thickness from 5.9% for fetuses with NT < p95th to 43.3% for those with NT > 4.5 mm. The highest rate of numerical aberrations was observed in fetuses with NT > 4.5 mm having at least one structural anomaly (50.2%). CNVs stratified by NT thickness were detected in 2.9%, 2.9%, 3.5%, 4.3%, 12.2%, and 9.0% of fetuses with NT < 95th percentile, 95th percentile-2.9 mm, 3.0-3.4 mm, 3.5-3.9 mm, 4.0-4.5 mm, and >4.5 mm, respectively. After exclusion of fetuses with structural anomalies and numerical aberrations, aCGH revealed CNVs in 2.0% of fetuses with NT < 95th percentile, 1.5% with NTp95-2.9 mm, 1.3% with NT 3.0-3.4 mm, 5.4% with NT 3.5-3.9 mm, 19.0% with NT 4.0-4.5 mm, and 14.8% with NT > 4.5 mm. Conclusions: In conclusion, our study indicates that performing aCGH in samples referred to invasive prenatal testing after first-trimester screening provides additional clinically valuable information over conventional karyotyping, even in cases with normal NT and anatomy.
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland;
| | - Katarzyna Kowalczyk
- Department of Medical Genetics, Institute of Mother and Child, 30-663 Warsaw, Poland; (K.K.); (N.B.)
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Jagiellonian University Medical College, 30-551 Kraków, Poland; (K.S.); (A.M.-T.); (M.B.-M.)
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, 30-551 Kraków, Poland; (K.S.); (A.M.-T.); (M.B.-M.)
| | - Wojciech Wójtowicz
- Information Technology Systems Department, Faculty of Management and Social Communication, Jagiellonian University, 30-348 Kraków, Poland;
| | - Hubert Huras
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland;
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Jagiellonian University Medical College, 30-551 Kraków, Poland; (K.S.); (A.M.-T.); (M.B.-M.)
| | - Nowakowska Beata
- Department of Medical Genetics, Institute of Mother and Child, 30-663 Warsaw, Poland; (K.K.); (N.B.)
| |
Collapse
|
4
|
Papageorgiou E, Athanasiadis A, Fidani S, Papoulidis I, Manolakos E, Siomou E, Chatzakis C, Sotiriadis A. The Effect of Resolution Level and Targeted Design in the Diagnostic Performance of Prenatal Chromosomal Microarray Analysis. Fetal Diagn Ther 2023; 50:397-405. [PMID: 37549642 DOI: 10.1159/000533137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION This study was performed to assess the optimal resolution for prenatal testing by array comparative genomic hybridization (aCGH), aiming to balance between maximum diagnostic yield and minimal detection of variants of uncertain significance (VOUS). METHODS This was a prospective study using data of 2,336 fetuses that underwent invasive prenatal diagnosis, and the samples were analyzed by aCGH. In total, six different aCGH platforms were studied; four different resolutions (0.18 Mb, 0.5 Mb, 1 Mb, and 2 Mb) and two platform designs (whole-genome [WG] and targeted). The results of these designs were compared based on their diagnostic yield and VOUS rate. The performance of the different designs was further analyzed according to indication for invasive testing. RESULTS The diagnostic yield of copy number variants increased with increasing level of analysis. The detection rates of clinically significant chromosomal abnormalities were almost the same across our targeted array designs; 7.2% with 0.18 Mb backbone/0.05 Mb versus 7.1% with 0.5 Mb backbone/0.05 Mb (p >0.05). However, a significant difference in the rate of VOUS was observed; 9.4% with 0.18 Mb backbone/0.05 Mb versus 6% with 0.5 Mb backbone/0.05 Mb (p <0.001). After analyzing the results across different indications for testing, we found that the application of non-targeted platform designs and lower levels of resolution analysis (such as 1 Mb WG or 0.5 MbL/1 MbG WG) would offer similar diagnostic yield in most cases with major congenital anomalies, with lower VOUS rates. However, the sample size for many indication groups was too small to extract robust associations. CONCLUSION It appears that the targeted array platform with 0.5 Mb backbone resolution and 0.05 Mb on targeted gene-rich regions is optimal for routine chromosomal microarray analysis use in prenatal diagnosis. It may be beneficial to individualize the minimum resolution in specific referral indications as the indications for invasive prenatal testing may be quite heterogeneous.
Collapse
Affiliation(s)
- Elena Papageorgiou
- Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Athanasiadis
- Third Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stiliani Fidani
- Department of General Biology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | - Christos Chatzakis
- Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Stern S, Hacohen N, Meiner V, Yagel S, Zenvirt S, Shkedi-Rafid S, Macarov M, Valsky DV, Porat S, Yanai N, Frumkin A, Daum H. Universal chromosomal microarray analysis reveals high proportion of copy-number variants in low-risk pregnancies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:813-820. [PMID: 32202684 DOI: 10.1002/uog.22026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To evaluate the yield and utility of the routine use of chromosomal microarray analysis (CMA) for prenatal genetic diagnosis in a large cohort of pregnancies with normal ultrasound (US) at the time of genetic testing, compared with pregnancies with abnormal US findings. METHODS We reviewed all prenatal CMA results in our center between November 2013 and December 2018. The prevalence of different CMA results in pregnancies with normal US at the time of genetic testing ('low-risk pregnancies'), was compared with that in pregnancies with abnormal US findings ('high-risk pregnancies'). Medical records were searched in order to evaluate subsequent US follow-up and the outcome of pregnancies with a clinically relevant copy-number variant (CNV), i.e. a pathogenic or likely pathogenic CNV or a susceptibility locus for disease with > 10% penetrance, related to early-onset disease in the low-risk group. RESULTS In a cohort of 6431 low-risk pregnancies that underwent CMA, the prevalence of a clinically significant CNV related to early-onset disease was 1.1% (72/6431), which was significantly lower than the prevalence in high-risk pregnancies (4.9% (65/1326)). Of the low-risk pregnancies, 0.4% (27/6431) had a pathogenic or likely pathogenic CNV, and another 0.7% (45/6431) had a susceptibility locus with more than 10% penetrance. Follow-up of the low-risk pregnancies with a clinically significant early-onset CNV revealed that 31.9% (23/72) were terminated, while outcome data were missing in 26.4% (19/72). In 16.7% (12/72) of low-risk pregnancies, an US abnormality was discovered later on in gestation, after genetic testing had been performed. CONCLUSION Although the background risk of identifying a clinically significant early-onset abnormal CMA result in pregnancies with a low a-priori risk is lower than that observed in high-risk pregnancies, the risk is substantial and should be conveyed to all pregnant women. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S Stern
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Hacohen
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - V Meiner
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Zenvirt
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Shkedi-Rafid
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Macarov
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D V Valsky
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Porat
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Yanai
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Frumkin
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Daum
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Hu ZM, Li LL, Zhang H, Zhang HG, Liu RZ, Yu Y. Clinical Application of Chromosomal Microarray Analysis in Pregnant Women with Advanced Maternal Age and Fetuses with Ultrasonographic Soft Markers. Med Sci Monit 2021; 27:e929074. [PMID: 33837172 PMCID: PMC8045481 DOI: 10.12659/msm.929074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background In pregnant women with advanced maternal age (AMA) and fetuses with ultrasonographic (USG) soft markers it is always challenging to decide whether to implement chromosomal microarray analysis (CMA) or not. It is unclear whether CMA should be used in the fetuses with isolated USG soft markers, and there is still a lack of extensive sample research. Material/Methods We enrolled 1521 cases in our research and divided them into 3 groups as follows: pregnant women with isolated AMA (group 1, n=633), pregnant women whose fetuses had isolated USG soft markers (group 2, n=750), and pregnant women with AMA whose fetuses had isolated USG soft markers (group 3, n=138). All pregnant women underwent prenatal ultrasound and amniocentesis, and fetal cells in the amniotic fluid were used for genetic analysis of CMA. All participants signed a written informed consent prior to CMA. Results Abnormal findings were detected by CMA in 330 (21.70%) fetuses, including 37 (2.43%) clinically significant copy number variations (CNVs), 52 (3.42%) benign or likely benign CNVs, and 240 (15.78%) variants of unknown significance. The frequency of clinically significant CNVs in group 1 and group 2 were significantly lower than that in group 3 (2.37% and 2.0% vs 5.07%, P<0.01). More than a half (59.46%, 22/37) of the pregnant women decided to continue their pregnancy despite having a fetus diagnosed with clinically significant CNV. Conclusions CMA can increase the diagnostic yield of fetal chromosomal abnormality for pregnant women with isolated AMA or/and their fetuses had isolated USG soft markers.
Collapse
Affiliation(s)
- Zhu-Ming Hu
- Center of Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Lei-Lei Li
- Center of Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Han Zhang
- Center of Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Hong-Guo Zhang
- Center of Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Rui-Zhi Liu
- Center of Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yang Yu
- Center of Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
7
|
Abstract
Prenatal testing for chromosomal abnormalities is designed to provide an accurate assessment of a patient's risk of carrying a fetus with a chromosomal disorder. A wide variety of prenatal screening and diagnostic tests are available; each offers varying levels of information and performance, and each has relative advantages and limitations. When considering screening test characteristics, no one test is superior in all circumstances, which results in the need for nuanced, patient-centered counseling from the obstetric care professional and complex decision making by the patient. Each patient should be counseled in each pregnancy about options for testing for fetal chromosomal abnormalities. It is important that obstetric care professionals be prepared to discuss not only the risk of fetal chromosomal abnormalities but also the relative benefits and limitations of the available screening and diagnostic tests. Testing for chromosomal abnormalities should be an informed patient choice based on provision of adequate and accurate information, the patient's clinical context, accessible health care resources, values, interests, and goals. All patients should be offered both screening and diagnostic tests, and all patients have the right to accept or decline testing after counseling.The purpose of this Practice Bulletin is to provide current information regarding the available screening test options available for fetal chromosomal abnormalities and to review their benefits, performance characteristics, and limitations. For information regarding prenatal diagnostic testing for genetic disorders, refer to Practice Bulletin No. 162, Prenatal Diagnostic Testing for Genetic Disorders. For additional information regarding counseling about genetic testing and communicating test results, refer to Committee Opinion No. 693, Counseling About Genetic Testing and Communication of Genetic Test Results. For information regarding carrier screening for genetic conditions, refer to Committee Opinion No. 690, Carrier Screening in the Age of Genomic Medicine and Committee Opinion No. 691, Carrier Screening for Genetic Conditions. This Practice Bulletin has been revised to further clarify methods of screening for fetal chromosomal abnormalities, including expanded information regarding the use of cell-free DNA in all patients regardless of maternal age or baseline risk, and to add guidance related to patient counseling.
Collapse
|
8
|
Bardi F, Bosschieter P, Verheij J, Go A, Haak M, Bekker M, Sikkel E, Coumans A, Pajkrt E, Bilardo C. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat Diagn 2019; 40:197-205. [PMID: 31697852 PMCID: PMC7027496 DOI: 10.1002/pd.5590] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/05/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Objectives To give an overview of the genetic and structural abnormalities occurring in fetuses with nuchal translucency (NT) measurement exceeding the 95th percentile at first‐trimester screening and to investigate which of these abnormalities would be missed if cell‐free fetal DNA (cfDNA) were used as a first‐tier screening test for chromosomal abnormalities. Methods This is a national study including 1901 pregnancies with NT≥95th percentile referred to seven university hospitals in the Netherlands between 1 January 2010 and 1 January 2016. All cases with unknown pregnancy outcome were excluded. Results of detailed ultrasound examinations, karyotyping, genotyping, pregnancy and neonatal outcomes, investigation by a clinical geneticist and post‐mortem investigations were collected. Results In total, 821 (43%) pregnancies had at least one abnormality. The rate of abnormalities was 21% for fetuses with NT between 95th and 99th percentile and 62% for fetuses with NT≥99th percentile. Prevalence of single‐gene disorders, submicroscopic, chromosomal and structural abnormalities was 2%, 2%, 30% and 9%, respectively. Conclusion Although cfDNA is superior to the combined test, especially for the detection of trisomy 21, 34% of the congenital abnormalities occurring in fetuses with increased NT may remain undetected in the first trimester of pregnancy, unless cfDNA is used in combination with fetal sonographic assessment, including NT measurement. What's already known about this topic?
Nuchal translucency is associated with a wide range of chromosomal and structural abnormalities.
What does this study add?
If cell‐free DNA were used as the only first trimester screening test, 34% of fetal congenital abnormalities would be missed in the first trimester of pregnancy. In high‐risk pregnancies with increased nuchal translucency (NT≥95th percentile), 23% of abnormalities are found in fetuses with NT between 95th and 99th percentile.
Collapse
Affiliation(s)
- Francesca Bardi
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pien Bosschieter
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joke Verheij
- Department of Clinical Genetics. University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Attie Go
- Department of Obstetrics and Gynaecology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monique Haak
- Department of Obstetrics and Gynaecology, University Medical Center Leiden, Leiden, the Netherlands
| | - Mireille Bekker
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esther Sikkel
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Audrey Coumans
- Department of Obstetrics and Gynaecology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Caterina Bilardo
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Chau MHK, Cao Y, Kwok YKY, Chan S, Chan YM, Wang H, Yang Z, Wong HK, Leung TY, Choy KW. Characteristics and mode of inheritance of pathogenic copy number variants in prenatal diagnosis. Am J Obstet Gynecol 2019; 221:493.e1-493.e11. [PMID: 31207233 DOI: 10.1016/j.ajog.2019.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Microdeletions and microduplications can occur in any pregnancy independent of maternal age. The spectrum and features of pathogenic copy number variants including the size, genomic distribution, and mode of inheritance are not well studied. These characteristics have important clinical implications regarding expanding noninvasive prenatal screening for microdeletions and microduplications. OBJECTIVES The aim was to investigate the spectrum and characteristics of pathogenic copy number variants in prenatal genetic diagnosis and to provide recommendations for expanding the scope of noninvasive prenatal screening for microdeletions and microduplications. STUDY DESIGN This was a retrospective study of 1510 pregnant women who underwent invasive prenatal diagnostic testing by chromosomal microarray analysis. Prenatal samples were retrieved by amniocentesis or chorionic villus sampling and sent to our prenatal genetic diagnosis laboratory for chromosomal microarray analysis. The risk of carrying a fetus with pathogenic copy number variants is stratified by the patients' primary indication for invasive testing. We searched the literature for published prenatal chromosomal microarray data to generate a large cohort of 23,865 fetuses. The characteristics and spectrum of pathogenic copy number variants including the type of aberrations (gains or losses), genomic loci, sizes, and the mode of inheritance were studied. RESULTS Overall, 375 of 23,865 fetuses (1.6%) carried pathogenic copy number variants for any indication for invasive testing, and 44 of them (11.7%) involve 2 or more pathogenic copy number variants. A total of 428 pathogenic copy number variants were detected in these fetuses, of which 280 were deletions and 148 were duplications. Three hundred sixty (84.1%) were less than 5 Mb in size and 68 (15.9%) were between 5 and 10 Mb. The incidence of carrying a pathogenic copy number variant in the high-risk group is 1 in 36 and the low-risk group is 1 in 125. Parental inheritance study results were available for 311 pathogenic copy number variants, 71 (22.8%) were maternally inherited, 36 (11.6%) were paternally inherited, and 204 (65.6%) occurred de novo. CONCLUSION Collectively, pathogenic copy number variants are common in pregnancies. High-risk pregnancies should be offered invasive testing with chromosomal microarray analysis for the most comprehensive investigation. Detection limits on size, parental inheritance, and genomic distribution should be carefully considered before implementing copy number variant screening in expanded noninvasive prenatal screening.
Collapse
Affiliation(s)
- Matthew Hoi Kin Chau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne Ka Yin Kwok
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Samantha Chan
- Warwick Medical School at the University of Warwick, Coventry, United Kingdom
| | - Yiu Man Chan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huilin Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital, Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research, and Transformation Team, Shenzhen, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhenjun Yang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hoi Kin Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China.
| |
Collapse
|
10
|
Prenatal Diagnostic Value of Chromosomal Microarray in Fetuses with Nuchal Translucency Greater than 2.5 mm. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6504159. [PMID: 32908864 PMCID: PMC7471829 DOI: 10.1155/2019/6504159] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/17/2019] [Indexed: 02/03/2023]
Abstract
Objective To assess the clinical value of prenatal diagnosis using quantitative fluorescent polymerase chain reaction (QF-PCR) and chromosomal microarray analysis (CMA) for the examination of genomic imbalances in prenatal amniotic fluid samples from fetuses with a nuchal translucency (NT) greater than or equal to 2.5 mm. Materials and Methods A total of 494 amniotic fluid samples and 5 chorionic villus samples were included in this study, with a fetal NT ≥ 2.5 mm at 11–13+6 weeks of gestation from November 2015 to December 2018. All cases were examined with QF-PCR, and those with normal QF-PCR results were then analyzed by CMA. Results Of the 499 cases, common aneuploidies were detected by QF-PCR in 61 (12.2%) cases. One case of triploidy, one case of trisomy 21 mosaicism, and two cases of X/XX mosaicism were further confirmed by fluorescence in situ hybridization (FISH). Among the 434 cases with normal QF-PCR results, microarray detected additional pathogenic copy number variants (CNVs) in 4.8% (21/434) of cases. Six cases would have been expected to be detectable by conventional karyotyping because of large deletions/duplications (>10 Mb), leaving fifteen (3.5%, 15/428) cases with pathogenic CNVs only detectable by CMA. Pathogenic CNVs, especially those <10 Mb, were centralized in cases with an NT < 4.5 mm, including 5 pathogenic CNVs in cases with an NT of 2.5–3.5 mm and 7 pathogenic CNVs in cases with an NT of 3.5–4.5 mm. Conclusions It is rational to use a diagnostic strategy in which CMA is preceded by a less-expensive, rapid method, namely, QF-PCR, to detect common aneuploidies. CMA allows for the detection of a number of pathogenic chromosomal aberrations in fetuses with an NT ≥ 2.5 mm.
Collapse
|
11
|
Tonni G, Palmisano M, Perez Zamarian AC, Rabachini Caetano AC, Santana EFM, Peixoto AB, Armbruster-Moraes E, Ruano R, Araujo Júnior E. Phenotype to genotype characterization by array-comparative genomic hydridization (a-CGH) in case of fetal malformations: A systematic review. Taiwan J Obstet Gynecol 2019; 58:15-28. [PMID: 30638470 DOI: 10.1016/j.tjog.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of the current review is to report a-CGH abnormalities identified in fetuses with prenatally diagnosed fetal malformations in whom a normal karyotype was diagnosed with conventional cytogenetic analysis. A systematic electronic search of databases (PubMed/Medline, EMBASE/SCOPUS) has been conducted from inception to May, 2017. Bibliographic analysis has been performed according to PRISMA statement for review. The following keywords were used: 'array-CGH' and 'fetal malformations" and "prenatal diagnosis"; alternatively, "microarray", "oligonucleotide array", "molecular biology", "antenatal diagnostics", "fetal diagnostics", "congenital malformations" and "ultrasound" were used to capture both "a-CGH" and "prenatal". One-hundred and twelve fetuses with prenatally diagnosed fetal malformations with normal karyotyping and a-CGH abnormalities detected are described. Single or multiple microarray abnormalities diagnosed have been classified in relation to different organ/system affected. The most frequent a-CGH abnormalities were detected in cases of congenital heart diseases (CDHs), multiple malformations and central nervous system (CNS) malformations. Maternal or paternal carrier-state was seen in 19.64% (22/112), of cases while the number of reported de novo mutations accounted for 46.42% (52/112) of all CNVs microarray abnormalities. Array-comparative genomic hydridization (a-CGH) may become an integral and complemantary genetic testing when fetal malformations are detected prenatally in fetuses with normal cytogenetic karyotype. In addition, a-CGH enables the identification of CNVs and VOUS and improves the calculation of recurrent risk and the genetic counseling.
Collapse
Affiliation(s)
- Gabriele Tonni
- Prenatal Diagnostic Service, Department of Obstetrics and Gynecology, Istituto di Ricerca a Carattere Clinico Scientifico (IRCCS) AUSL Reggio Emilia, Italy.
| | - Marcella Palmisano
- Prenatal Diagnostic Service, Department of Obstetrics and Gynecology, Istituto di Ricerca a Carattere Clinico Scientifico (IRCCS) AUSL Reggio Emilia, Italy
| | - Ana Cristina Perez Zamarian
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Ana Carolina Rabachini Caetano
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Eduardo Félix Martins Santana
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Alberto Borges Peixoto
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Edecio Armbruster-Moraes
- Discipline of Genetics, Faculty of Medicine of ABC (FMABC), Santo André-SP, Brazil; Department of Gynecology and Obstetrics, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Rodrigo Ruano
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| |
Collapse
|
12
|
Zhao XR, Gao L, Wu Y, Wang YL. Application of chromosomal microarray in fetuses with increased nuchal translucency. J Matern Fetal Neonatal Med 2019; 33:1749-1754. [PMID: 30688128 DOI: 10.1080/14767058.2019.1569622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To evaluate submicroscopic chromosomal abnormalities in fetuses with increased nuchal translucency (NT) and normal karyotype.Methods: A total of 319 fetuses with increased NT (≥3.0 mm) were tested using conventional karyotyping. When cytogenetic analysis showed normal chromosomes, the parents then received a consultation for chromosomal microarray (CMA) analysis, and a subsequent morphology scan was performed between 20 and 24 weeks gestation. Submicroscopic chromosomal abnormalities were assessed and compared between the fetuses with and without structural defects. Likewise, the prevalence of pathologic copy number variants (CNVs) among cases with increased NT was compared with the 926 low-risk cases consisted of patients whose sole indication for testing was advanced maternal age.Results: Chromosomal abnormality was identified in 32.29 (103/319) of fetuses, and 137 samples were tested using CMA. Additional pathogenic copy number variants (CNVs) were also detected in 5.12% (7/137) of the fetuses. There was no significant difference in the abnormal detection rate between fetuses showing an abnormal morphology scan and those with a normal morphology scan (11.11% [2/18] versus 4.20% [5/119], respectively; p > .05). The prevalence of pathological CMA results in cases with increased NT was significantly higher when compared with the low-risk patients (5.12% [7/137] versus 1.19% [11/926], respectively; p = .0009).Conclusions: Nuchal translucency (NT) ≥3.0 mm are associated with the highest risk for a CMA abnormality. Submicroscopic chromosomal abnormalities should be accessed when the fetus was found to be with increased NT and normal karyotype. It is, therefore, important to inform parents in a professional prenatal counseling setting regarding the potential advantages of CMA.
Collapse
Affiliation(s)
- Xin-Rong Zhao
- Department of Prenatal Diagnostic Center, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Li Gao
- Department of Prenatal Diagnostic Center, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yi Wu
- Department of Prenatal Diagnostic Center, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yan-Lin Wang
- Department of Prenatal Diagnostic Center, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
13
|
Srebniak MI, Joosten M, Knapen MFCM, Arends LR, Polak M, van Veen S, Go ATJI, Van Opstal D. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 51:445-452. [PMID: 28556491 DOI: 10.1002/uog.17533] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To establish, based on a systematic literature review, the frequency of pathogenic submicroscopic chromosomal aberrations in fetuses that are not at increased risk for unbalanced structural chromosomal aberrations, with the aim of determining whether high-resolution testing for submicroscopic aberrations is beneficial in a general pregnant population. METHODS EMBASE, PubMed, Web of Science and CENTRAL databases were searched systematically on 3 June 2016 for all relevant articles on the prevalence of pathogenic submicroscopic copy number variants (CNVs) in fetuses referred for prenatal invasive testing because of advanced maternal age (AMA) or parental anxiety (ANX). Relevant full-text articles were analyzed and the prevalence of submicroscopic CNVs was calculated based on the extracted data. Meta-analysis was conducted in a pooled cohort of 10 614 fetuses based on the 10 largest studies (n > 300) of a total of 19 that were relevant. RESULTS Pooled estimate analysis indicated that 0.84% (95% CI, 0.55-1.30%) of fetuses that had invasive testing because of AMA/ANX carried a pathogenic clinically significant submicroscopic aberration. The onset/penetrance of submicroscopic findings was studied in 10 314 fetuses reported in eight papers that presented aberrant cases with all necessary details to allow assessment of the findings. The pooled estimates resulting from meta-analysis of the data indicated that an early-onset syndromic disorder was detected in 0.37% (95% CI, 0.27-0.52%) of cases, a susceptibility CNV was found in 0.30% (95% CI, 0.14-0.67%) and late-onset diseases were reported in 0.11% (95% CI, 0.05%-0.21%). The prevalence of early-onset syndromic disorders caused by a submicroscopic aberration was calculated to be 1:270. When the risk for submicroscopic aberrations is added to the individual risk for microscopic chromosomal aberrations, all pregnant women have a risk of higher than 1 in 180 for a relevant chromosomal aberration, and pregnant women under 36 years of age have a higher risk for submicroscopic pathogenic aberrations than for Down syndrome. CONCLUSION This systematic review shows that a significant proportion of fetuses in a general pregnant population carry a submicroscopic pathogenic CNV. Based on these figures, all women should be informed on their individual risk for all pathogenic chromosomal aberrations and not only for common trisomies. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M I Srebniak
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - M Joosten
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - M F C M Knapen
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
- Foundation Prenatal Screening Southwest Region of the Netherlands, Rotterdam, The Netherlands
| | - L R Arends
- Department of Psychology, Education & Child Studies (DPECS), Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands
| | - M Polak
- Department of Psychology, Education & Child Studies (DPECS), Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - S van Veen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - A T J I Go
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - D Van Opstal
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Stosic M, Levy B, Wapner R. The Use of Chromosomal Microarray Analysis in Prenatal Diagnosis. Obstet Gynecol Clin North Am 2018; 45:55-68. [DOI: 10.1016/j.ogc.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Maya I, Yacobson S, Kahana S, Yeshaya J, Tenne T, Agmon-Fishman I, Cohen-Vig L, Shohat M, Basel-Vanagaite L, Sharony R. Cut-off value of nuchal translucency as indication for chromosomal microarray analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2017; 50:332-335. [PMID: 28133835 DOI: 10.1002/uog.17421] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
OBJECTIVES An association between isolated, increased nuchal translucency thickness (NT) and pathogenic findings on chromosomal microarray analysis (CMA) has been reported. A recent meta-analysis reported that most studies use a NT cut-off value of 3.5 mm. However, considering NT distribution and the commonly accepted 5% false-positive rate in maternal serum screening, NT cut-off levels should be reconsidered. The aim of this study was to assess different NT cut-off levels as indication for CMA and to determine whether CMA should be recommended for mildly increased NT of 3.0-3.4 mm. METHODS This was a retrospective, multicenter study of singleton pregnancies with CMA results and either normal NT and no other finding or with increased NT as the only medical indication for CMA at the time of an invasive procedure (increased NT was considered an isolated finding in cases of advanced maternal age). Women with normal fetal NT who underwent CMA did so at their own request. A single laboratory performed all genetic analyses. Comparative genomic hybridization microarray analysis or single nucleotide polymorphism array technology was used for CMA. If combined first-trimester screening (NT and biochemistry) indicated increased risk for common aneuploidies, the case was excluded. NT was used to divide cases into three groups (≤ 2.9 mm, 3.0-3.4 mm and ≥ 3.5 mm) and their CMA results were compared. RESULTS CMA results were recorded in 1588 pregnancies, among which 770 fetuses had either normal NT with no other finding or isolated increased NT. Of these, 462 had NT ≤ 2.9 mm, 170 had NT of 3.0-3.4 mm and 138 had NT ≥ 3.5 mm. Pathogenic copy number variants were found in 1.7%, 6.5% and 13.8% of cases, respectively. CONCLUSION Our results suggest that CMA should be recommended when fetuses have isolated, mildly increased NT (3.0-3.4 mm). Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- I Maya
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - S Yacobson
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - S Kahana
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - J Yeshaya
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - T Tenne
- The Genetics Institute, Meir Medical Center, Kfar Saba, Israel
| | - I Agmon-Fishman
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - L Cohen-Vig
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - M Shohat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Bioinformatics Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - L Basel-Vanagaite
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - R Sharony
- The Genetics Institute, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
16
|
Wu Y, Wang Y, Tao J, Han X, Zhao X, Liu C, Gao L, Cheng W. The clinical use of chromosomal microarray analysis in detection of fetal chromosomal rearrangements: a study from China Mainland. Eur J Obstet Gynecol Reprod Biol 2017; 212:44-50. [DOI: 10.1016/j.ejogrb.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/19/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
|
17
|
Suela J, López-Expósito I, Querejeta ME, Martorell R, Cuatrecasas E, Armengol L, Antolín E, Domínguez Garrido E, Trujillo-Tiebas MJ, Rosell J, García Planells J, Cigudosa JC. Recomendaciones para el uso de microarrays en el diagnóstico prenatal. Med Clin (Barc) 2017; 148:328.e1-328.e8. [DOI: 10.1016/j.medcli.2016.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
|
18
|
Bertini V, Azzarà A, Toschi B, Gana S, Valetto A. 3p26.3 terminal deletions: a challenge for prenatal genetic counseling. Prenat Diagn 2017; 37:197-200. [PMID: 27933663 DOI: 10.1002/pd.4978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/06/2016] [Accepted: 11/29/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Veronica Bertini
- Laboratory of Medical Genetics, A.O.U. Pisana, Ospedale S. Chiara, Pisa, Italy
| | - Alessia Azzarà
- Laboratory of Medical Genetics, A.O.U. Pisana, Ospedale S. Chiara, Pisa, Italy
| | - Benedetta Toschi
- Laboratory of Medical Genetics, A.O.U. Pisana, Ospedale S. Chiara, Pisa, Italy
| | - Simone Gana
- Laboratory of Medical Genetics, A.O.U. Pisana, Ospedale S. Chiara, Pisa, Italy
| | - Angelo Valetto
- Laboratory of Medical Genetics, A.O.U. Pisana, Ospedale S. Chiara, Pisa, Italy
| |
Collapse
|
19
|
Oneda B, Rauch A. Microarrays in prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 2017; 42:53-63. [PMID: 28215395 DOI: 10.1016/j.bpobgyn.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
In prenatal diagnosis, chromosomal microarray (CMA) has not yet fully replaced conventional karyotyping but has rapidly become the recommended test in pregnancies with ultrasound abnormalities. In this review, we provide an overview of the published data concerning this technology and the controversies concerning its use in the prenatal setting. There is abundant evidence indicating the added detection of pathogenic abnormalities with CMA in comparison to the traditional karyotyping, especially in fetuses with multiple or isolated ultrasound abnormalities such as congenital heart disease, increased nuchal translucency, or oral cleft. On the other hand, there is also a risk to detect variants of unknown significance, late-onset disorders, and variants in susceptibility loci. However, it has been shown that pregnant couples tend to prefer a maximum of information about the health of their unborn child. Taken together, CMA has considerable diagnostic and prognostic values during pregnancy and should therefore be the test of choice.
Collapse
Affiliation(s)
- Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland.
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Govaerts L, Srebniak M, Diderich K, Joosten M, Riedijk S, Knapen M, Go A, Papatsonis D, de Graaf K, Toolenaar T, van der Steen S, Huijbregts G, Knijnenburg J, de Vries F, Van Opstal D, Galjaard RJ. Prenatal diagnosis of susceptibility loci for neurodevelopmental disorders - genetic counseling and pregnancy outcome in 57 cases. Prenat Diagn 2016; 37:73-80. [DOI: 10.1002/pd.4979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/15/2016] [Accepted: 11/26/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lutgarde Govaerts
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Malgorzata Srebniak
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Karin Diderich
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Sam Riedijk
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Maarten Knapen
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam The Netherlands
- Foundation Prenatal Screening Southwest region of the Netherlands; Rotterdam The Netherlands
| | - Attie Go
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam The Netherlands
| | - Dimitri Papatsonis
- Department of Obstetrics and Gynecology; Amphia Hospital; Breda The Netherlands
| | - Katja de Graaf
- Department of Obstetrics and Gynecology; Reinier de Graaf Gasthuis; Delft The Netherlands
| | - Toon Toolenaar
- Department of Gynecology; Albert Schweitzer Hospital Dordrecht; Dordrecht The Netherlands
| | - Sanne van der Steen
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Gido Huijbregts
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Femke de Vries
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Robert-Jan Galjaard
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
21
|
Srebniak MI, de Wit MC, Diderich KEM, Govaerts LCP, Joosten M, Knapen MFCM, Bos MJ, Looye-Bruinsma GAG, Koningen M, Go ATJI, Galjaard RJH, Van Opstal D. Enlarged NT (≥3.5 mm) in the first trimester - not all chromosome aberrations can be detected by NIPT. Mol Cytogenet 2016; 9:69. [PMID: 27610202 PMCID: PMC5015200 DOI: 10.1186/s13039-016-0279-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since non-invasive prenatal testing (NIPT) in maternal blood became available, we evaluated which chromosome aberrations found in our cohort of fetuses with an enlarged NT in the first trimester of pregnancy (tested with SNP microarray) could be detected by NIPT as well. METHOD 362 fetuses were referred for cytogenetic testing due to an enlarged NT (≥3.5 mm). Chromosome aberrations were investigated using QF-PCR, karyotyping and whole genome SNP array. RESULTS After invasive testing a chromosomal abnormality was detected in 137/362 (38 %) fetuses. 100/362 (28 %) cases concerned trisomy 21, 18 or 13, 25/362 (7 %) an aneuploidy of sex chromosomes and 3/362 (0.8 %) triploidy. In 6/362 (1.6 %) a pathogenic structural unbalanced chromosome aberration was seen and in 3/362 (0.8 %) a susceptibility locus for neurodevelopmental disorders was found. We estimated that in 2-10 % of fetuses with enlarged NT a chromosome aberration would be missed by current NIPT approaches. CONCLUSION Based on our cohort of fetuses with enlarged NT we may conclude that NIPT, depending on the approach, will miss chromosome aberrations in a significant percentage of pregnancies. Moreover all abnormal NIPT results require confirmatory studies with invasive testing, which will delay definitive diagnosis in ca. 30 % of patients. These figures are important for pretest counseling enabling pregnant women to make informed choices on the prenatal test. Larger cohorts of fetuses with an enlarged NT should be investigated to assess the additional diagnostic value of high resolution array testing for this indication.
Collapse
Affiliation(s)
- Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Merel C de Wit
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Lutgarde C P Govaerts
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands ; Foundation Prenatal Screening Southwest region of The Netherlands, Wytemaweg 80, Na-1509, 3015 CN Rotterdam, The Netherlands
| | - Marnix J Bos
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Gerda A G Looye-Bruinsma
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Mieke Koningen
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Attie T J I Go
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Robert Jan H Galjaard
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
22
|
Lazier J, Fruitman D, Lauzon J, Bernier F, Argiropoulos B, Chernos J, Caluseriu O, Simrose R, Thomas MA. Prenatal Array Comparative Genomic Hybridization in Fetuses With Structural Cardiac Anomalies. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2016; 38:619-26. [PMID: 27591345 DOI: 10.1016/j.jogc.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To examine the diagnostic performance of array comparative genomic hybridization (CGH) for fetal cardiac anomalies in two medium-sized Canadian prenatal genetics clinics. METHODS We prospectively recruited 22 pregnant women with fetal structural cardiac anomalies, normal rapid aneuploidy detection, and FISH for 22q11.2 testing for array CGH analysis. RESULTS One case had an 8p deletion that was also visible on karyotype and included the GATA4 gene, which has been associated with congenital heart disease. Two cases had inherited pathogenic copy number variants (CNVs) of variable expressivity and penetrance: one was a duplication of 16p11.2 and the other a deletion of 15q11.2. One case had the incidental finding of being a carrier of a recessive disease unrelated to the cardiac anomaly. CONCLUSIONS Of these prospectively recruited cases of fetal cardiac anomalies, 14% had a pathogenic result on array CGH. Pathogenic CNVs of variable penetrance and expressivity were a significant proportion of the positive results identified. These CNVs are generally associated with neurodevelopmental issues and may or may not have been associated with the fetus' underlying congenital heart disease. Array CGH increases the diagnostic yield in this group of patients; however, certain CNVs remain a challenge for counselling in the prenatal setting.
Collapse
Affiliation(s)
- Joanna Lazier
- Department of Medical Genetics, University of Calgary, Calgary AB
| | - Deborah Fruitman
- Department of Pediatrics, University of Calgary, Calgary AB; Section of Pediatric Cardiology, University of Calgary, Calgary AB
| | - Julie Lauzon
- Department of Medical Genetics, University of Calgary, Calgary AB; Department of Pediatrics, University of Calgary, Calgary AB; Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary AB
| | - Francois Bernier
- Department of Medical Genetics, University of Calgary, Calgary AB; Department of Pediatrics, University of Calgary, Calgary AB; Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary AB
| | - Bob Argiropoulos
- Cytogenetics Laboratory, Alberta Children's Hospital, Calgary AB
| | - Judy Chernos
- Cytogenetics Laboratory, Alberta Children's Hospital, Calgary AB
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton AB
| | - Rebecca Simrose
- Department of Obstetrics and Gynecology, University of Calgary, Calgary AB
| | - Mary Ann Thomas
- Department of Medical Genetics, University of Calgary, Calgary AB; Department of Pediatrics, University of Calgary, Calgary AB; Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary AB
| |
Collapse
|
23
|
Shkedi-Rafid S, Fenwick A, Dheensa S, Wellesley D, Lucassen AM. What results to disclose, when, and who decides? Healthcare professionals' views on prenatal chromosomal microarray analysis. Prenat Diagn 2016; 36:252-9. [PMID: 26743561 PMCID: PMC5067646 DOI: 10.1002/pd.4772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/01/2015] [Accepted: 01/03/2016] [Indexed: 12/26/2022]
Abstract
Objectives This study explored the views of healthcare professionals (HCPs) in the UK about what information should be disclosed, when; and whether women/parents should be given a choice as to what they wish to know. Methods Q‐methodology was used to assess the views of 40 HCPs (genetic HCPs, fetal medicine experts, lab‐scientists). Results Most participants agreed that variants of unknown clinical significance should not be disclosed. Participants were divided between those who considered variants of uncertain clinical significance helpful for parents and clinicians, and those who considered them harmful. Although recognising the potential disadvantages of disclosing risks for adult‐onset conditions, participants thought it would be difficult to withhold such information once identified. Participants largely supported some parental involvement in determining which results should be returned. Most participants believed that information obtained via CMA testing in pregnancy should either be disclosed during pregnancy, or not at all. Conclusion HCPs taking part in the study largely believed that variants that will inform the management of the pregnancy, or are relevant to other family members, should be reported. Recent UK guidelines, published after this research was completed, reflect these opinions. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. What's already known about this topic?Empirical data on healthcare professionals' (HCPs) and parents' experience with prenatal CMA are scarce. Published data mainly focused on issues around uncertain results obtained via CMA, and on genetic health professionals. The two main difficulties expressed by genetic counsellors associated with testing were interpreting uncertain results, and termination of pregnancies based on uncertain results
What does this study add?It is the first study examining attitudes of a wide range of professionals involved in CMA testing: laboratory professionals, fetal medicine experts, and genetic health professionals. We describe what types of results professionals think should or should not be disclosed and with whom they consider the onus for such decision making should lie. These views are reflected in the recent UK guidelines about CMA testing.
Collapse
Affiliation(s)
- Shiri Shkedi-Rafid
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela Fenwick
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sandi Dheensa
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Wellesley
- Wessex Clinical Genetics Service, University Hospitals Southampton, Southampton, UK
| | - Anneke M Lucassen
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Pan M, Han J, Zhen L, Yang X, Li R, Liao C, Li DZ. Prenatal diagnosis of fetuses with increased nuchal translucency using an approach based on quantitative fluorescent polymerase chain reaction and genomic microarray. Eur J Obstet Gynecol Reprod Biol 2015; 197:164-7. [PMID: 26771907 DOI: 10.1016/j.ejogrb.2015.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To assess the clinical value of prenatal diagnosis of fetuses with increased nuchal translucency (NT) using an approach based on quantitative fluorescent polymerase chain reaction (QF-PCR) and chromosomal microarray (CMA). STUDY DESIGN From January 2013 to October 2014, we included 175 pregnancies with fetal NT ≥ 3.5mm at 11-13 weeks' gestation who received chorionic villus sampling. QF-PCR was first used to rapidly detect common aneuploidies. The cases with a normal QF-PCR result were analyzed by CMA. RESULTS Of the 175 cases, common aneuploidies were detected by QF-PCR in 53 (30.2%) cases (30 cases of trisomy 21, 12 cases of monosomy X, 7 cases of trisomy 18, 3 cases of trisomy 13 and 1 case of 47, XXY). Among the 122 cases with a normal QF-PCR result, microarray detected additional pathogenic copy number variants (CNVs) in 5.7% (7/122) of cases. Four cases would have expected to be detectable by conventional karyotyping because of large deletions/duplications (>10 Mb), leaving three cases (2.5%; 3/118) with pathogenic CNVs only detectable by CMA. CONCLUSION It is rational to use a diagnostic strategy in which CMA is preceded by the less expensive, rapid, QF-PCR to detect common aneuploidies. CMA allows detection of a number of pathogenic chromosomal aberrations in fetuses with a high NT.
Collapse
Affiliation(s)
- Min Pan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Grande M, Jansen FAR, Blumenfeld YJ, Fisher A, Odibo AO, Haak MC, Borrell A. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 46:650-658. [PMID: 25900824 DOI: 10.1002/uog.14880] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To estimate the incremental yield of detecting copy number variants (CNVs) by genomic microarray over karyotyping in fetuses with increased nuchal translucency (NT) diagnosed by first-trimester ultrasound. METHODS This was a systematic review conducted in accordance with PRISMA criteria. We searched PubMed, Ovid MEDLINE and Web of Science for studies published between January 2009 and January 2015 that described CNVs in fetuses with increased NT, usually defined as ≥ 3.5 mm, and normal karyotype. Search terms included: fetal or prenatal, nuchal translucency or cystic hygroma or ultrasound anomaly, array comparative genomic hybridization or copy number variants, with related search terms. Risk differences were pooled to estimate the overall and stratified microarray incremental yield using RevMan. Quality assessment of included studies was performed using the Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS-2) checklist. RESULTS Seventeen studies met the inclusion criteria for analysis. Meta-analysis indicated an incremental yield of 5.0% (95% CI, 2.0-8.0%) for the detection of CNVs using microarray when pooling results. Stratified analysis of microarray results demonstrated a 4.0% (95% CI, 2.0-7.0%) incremental yield in cases of isolated NT and 7.0% (95% CI, 2.0-12.0%) when other malformations were present. The most common pathogenic CNVs reported were 22q11.2 deletion, 22q11.2 duplication, 10q26.12q26.3 deletion and 12q21q22 deletion. The pooled prevalence for variants of uncertain significance was 1%. CONCLUSION The use of genomic microarray provides a 5.0% incremental yield of detecting CNVs in fetuses with increased NT and normal karyotype.
Collapse
Affiliation(s)
- M Grande
- Department of Maternal-Fetal Medicine, Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Catalonia, Spain
| | - F A R Jansen
- Leiden University Medical Center, Department of Obstetrics and Fetal Medicine, Leiden, The Netherlands
| | - Y J Blumenfeld
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - A Fisher
- Elliot Health System, Manchester, NH, USA
| | - A O Odibo
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, University of South Florida, Tampa, FL, USA
| | - M C Haak
- Leiden University Medical Center, Department of Obstetrics and Fetal Medicine, Leiden, The Netherlands
| | - A Borrell
- Department of Maternal-Fetal Medicine, Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Van Opstal D, de Vries F, Govaerts L, Boter M, Lont D, van Veen S, Joosten M, Diderich K, Galjaard RJ, Srebniak MI. Benefits and burdens of using a SNP array in pregnancies at increased risk for the common aneuploidies. Hum Mutat 2015; 36:319-26. [PMID: 25504762 DOI: 10.1002/humu.22742] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Abstract
We present the nature of pathogenic SNP array findings in pregnancies without ultrasound (US) abnormalities and show the additional diagnostic value of SNP array as compared with rapid aneuploidy detection and karyotyping. 1,330 prenatal samples were investigated with a 0.5-Mb SNP array after the exclusion of the most common aneuploidies. In 2.7% (36/1,330) of the cases, pathogenic chromosome aberrations were found; a microscopically detectable abnormality in 0.7% and a submicroscopic aberration in 2%. Our results show that in addition to the age- or screening-related aneuploidy risk, in pregnancies without US abnormalities, there is a risk of 1:148 (9/1,330) for a (sub)microscopic abnormality associated with an early-onset often severe disease, 1:222 (6/1,330) for a submicroscopic aberration causing an early-onset disease, 1:74 (18/1,330) for carrying a susceptibility locus for a neurodevelopmental disorder, and 1:443 (3/1,330) for a late-onset disorder (hereditary neuropathy with liability to pressure palsies in all three cases). These risk figures are important for adequate pretest counseling so that prospective parents can make informed individualized choices between targeted prenatal testing and broad testing with SNP array. Based on our results, we believe if invasive testing is performed, SNP array should be the preferred cytogenetic technique irrespective of the indication.
Collapse
Affiliation(s)
- Diane Van Opstal
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Papoulidis I, Sotiriadis A, Siomou E, Papageorgiou E, Eleftheriades M, Papadopoulos V, Oikonomidou E, Orru S, Manolakos E, Athanasiadis A. Routine use of array comparative genomic hybridization (aCGH) as standard approach for prenatal diagnosis of chromosomal abnormalities. Clinical experience of 1763 prenatal cases. Prenat Diagn 2015; 35:1269-77. [DOI: 10.1002/pd.4685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/16/2015] [Accepted: 08/16/2015] [Indexed: 12/31/2022]
Affiliation(s)
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | | | | | | | - Vasilios Papadopoulos
- Department of Obstetrics and Gynecology; University of Patras Medical School; Patras Greece
| | | | - Sandro Orru
- Department of Medical Genetics; Cagliari University, Binaghi Hospital; Cagliari Italy
| | | | - Apostolos Athanasiadis
- First Department of Obstetrics and Gynecology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
28
|
Mansfield N, Boogert T, McLennan A. Prenatal diagnosis of a 46,XX male following noninvasive prenatal testing. Clin Case Rep 2015; 3:849-53. [PMID: 26509022 PMCID: PMC4614655 DOI: 10.1002/ccr3.352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/10/2015] [Accepted: 07/25/2015] [Indexed: 11/15/2022] Open
Abstract
Case report involving a normal female by NIPT with male external genitalia on routine fetal morphology assessment. QF-PCR, CGH microarray, and FISH revealed an unbalanced translocation, involving the short arms of the X and Y chromosomes. This case demonstrates the possible limitations of correctly identifying sex chromosome abnormalities via NIPT.
Collapse
Affiliation(s)
| | - Tom Boogert
- Sydney Ultrasound for Women Sydney, New South Wales, Australia
| | - Andrew McLennan
- Sydney Ultrasound for Women Sydney, New South Wales, Australia ; Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine, University of Sydney Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Srebniak MI, Diderich KE, Joosten M, Govaerts LC, Knijnenburg J, de Vries FA, Boter M, Lont D, Knapen MF, de Wit MC, Go AT, Galjaard RJH, Van Opstal D. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. Eur J Hum Genet 2015; 24:645-51. [PMID: 26328504 DOI: 10.1038/ejhg.2015.193] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 11/09/2022] Open
Abstract
To evaluate the diagnostic value of single-nucleotide polymorphism (SNP) array testing in 1033 fetuses with ultrasound anomalies we investigated the prevalence and genetic nature of pathogenic findings. We reclassified all pathogenic findings into three categories: causative findings; unexpected diagnoses (UD); and susceptibility loci (SL) for neurodevelopmental disorders. After exclusion of trisomy 13, 18, 21, sex-chromosomal aneuploidy and triploidies, in 76/1033 (7.4%) fetuses a pathogenic chromosome abnormality was detected by genomic SNP array: in 19/1033 cases (1.8%) a microscopically detectable abnormality was found and in 57/1033 (5.5%) fetuses a pathogenic submicroscopic chromosome abnormality was detected. 58% (n=44) of all these pathogenic chromosome abnormalities involved a causative finding, 35% (n=27) a SL for neurodevelopmental disorder, and 6% (n=5) a UD of an early-onset untreatable disease. In 0.3% of parental samples an incidental pathogenic finding was encountered. Our results confirm that a genomic array should be the preferred first-tier technique in fetuses with ultrasound anomalies. All UDs involved early-onset diseases, which is beneficial for the patients to know. It also seems that UDs occur at a comparable frequency among microscopic and submicroscopic pathogenic findings. SL were more often detected than in pregnancies without ultrasound anomalies.
Collapse
Affiliation(s)
| | - Karin Em Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lutgarde Cp Govaerts
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Femke At de Vries
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marjan Boter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debora Lont
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Fcm Knapen
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, The Netherlands.,Foundation Prenatal Screening Southwest region of the Netherlands, Rotterdam, The Netherlands
| | - Merel C de Wit
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Attie Tji Go
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Diane Van Opstal
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Gouas L, Kémény S, Beaufrère AM, Eymard-Pierre E, Pebrel-Richard C, Tchirkov A, Lemery D, Laurichesse-Delmas H, Vago P, Goumy C. Prenatal Screening of 21 Microdeletion/Microduplication Syndromes and Subtelomeric Imbalances by MLPA in Fetuses with Increased Nuchal Translucency and Normal Karyotype. Cytogenet Genome Res 2015. [PMID: 26201711 DOI: 10.1159/000435865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fetuses with increased nuchal translucency thickness (NT) are at increased risk for chromosomal abnormalities. In case of a normal karyotype, a minority of them may present with structural abnormalities or genetic syndromes, which may be related to submicroscopic chromosomal imbalances. The objective of this study was to evaluate whether MLPA screening of 21 syndromic and subtelomeric regions could improve the detection rate of small chromosomal aberrations in fetuses with increased NT and a normal karyotype. A total of 106 prenatal samples from fetuses with NT ≥ 99th centile and normal R- and G-banding were analyzed by MLPA for subtelomeric imbalances (SALSA P036 and P070) and 21 syndromic regions (SALSA P245). One sample showed a benign CNV (dup(8)pter, FBXO25 gene), and 1 patient was found to have a loss of 18 qter and a gain of 5 pter as a result of an unbalanced translocation. The incidence of cryptic pathogenic variants was <1% or 2.7% when only fetuses with other ultrasound abnormalities were taken into account. Submicroscopic imbalances in fetuses with increased NT may be individually rare, and genome-wide screening seems more likely to improve the diagnostic yield in these fetuses.
Collapse
Affiliation(s)
- Laetitia Gouas
- Service de Cytogx00E9;nx00E9;tique Mx00E9;dicale, Unitx00E9; de Mx00E9;decine Fx0153;tale, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Is prenatal cytogenetic diagnosis with genomic array indicated in pregnancies at risk for a molecular or metabolic disorder? Genet Med 2015; 18:307-8. [DOI: 10.1038/gim.2015.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/28/2015] [Indexed: 11/08/2022] Open
|
32
|
Srebniak MI, Van Opstal D, Joosten M, Diderich KEM, de Vries FAT, Riedijk S, Knapen MFCM, Go ATJI, Govaerts LCP, Galjaard RJH. Whole-genome array as a first-line cytogenetic test in prenatal diagnosis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 45:363-372. [PMID: 25488734 DOI: 10.1002/uog.14745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Affiliation(s)
- M I Srebniak
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lund ICB, Christensen R, Petersen OB, Vogel I, Vestergaard EM. Chromosomal microarray in fetuses with increased nuchal translucency. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 45:95-100. [PMID: 25393210 DOI: 10.1002/uog.14726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To assess the clinical value of using high-resolution chromosomal microarray (CMA) for the examination of genomic imbalances in prenatal uncultured chorionic villus samples from fetuses with increased nuchal translucency (NT) and a normal quantitative fluorescent polymerase chain reaction (QF-PCR) result, in a clinical setting in which more than 95% of pregnant women receive first-trimester combined screening. METHODS From January 2013 to July 2014, we included 132 chorionic villus samples from consecutive ongoing pregnancies, with fetal NT ≥ 3.5 mm at 11-13 weeks' gestation, from obstetric units (publicly funded healthcare) in Central and North Denmark Regions. DNA was extracted directly from the samples and examined with QF-PCR (n = 132) and 180 kb oligonucleotide array-based comparative genomic hybridization (n = 94). RESULTS In 38 cases, aneuploidies for chromosomes 18, 21 or X, or triploidy, were detected by QF-PCR. Among the 94 cases with a normal QF-PCR result, we detected pathogenic copy number variants (CNVs) by CMA in 12 fetuses (12.8% (95% CI, 7.5-21.0%)). In an additional three (3.2%) cases, CNVs with uncertain clinical significance were detected. CONCLUSION CMA is a valuable diagnostic technique in pregnancies with isolated fetal NT ≥ 3.5 mm.
Collapse
Affiliation(s)
- I C B Lund
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
34
|
Lowther C, Costain G, Stavropoulos DJ, Melvin R, Silversides CK, Andrade DM, So J, Faghfoury H, Lionel AC, Marshall CR, Scherer SW, Bassett AS. Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genet Med 2014; 17:149-57. [PMID: 25077648 DOI: 10.1038/gim.2014.83] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Recurrent 15q13.3 deletions are enriched in multiple neurodevelopmental conditions including intellectual disability, autism, epilepsy, and schizophrenia. However, the 15q13.3 microdeletion syndrome remains ill-defined. METHODS We systematically compiled all cases of 15q13.3 deletion published before 2014. We also examined three locally available cohorts to identify new adults with 15q13.3 deletions. RESULTS We identified a total of 246 cases (133 children, 113 adults) with deletions overlapping or within the 15q13.3 (breakpoint (BP)4-BP5) region, including seven novel adult cases from local cohorts. No BP4-BP5 deletions were identified in 23,838 adult controls. Where known, 15q13.3 deletions were typically inherited (85.4%) and disproportionately of maternal origin (P < 0.0001). Overall, 198 cases (121 children, 77 adults; 80.5%) had at least one neuropsychiatric diagnosis. Accounting for ascertainment, developmental disability/intellectual disability was present in 57.7%, epilepsy/seizures in 28.0%, speech problems in 15.9%, autism spectrum disorder in 10.9%, schizophrenia in 10.2%, mood disorder in 10.2%, and attention deficit hyperactivity disorder in 6.5%. By contrast, major congenital malformations, including congenital heart disease (2.4%), were uncommon. Placenta previa occurred in the pregnancies of four cases. CONCLUSION The 15q13.3 microdeletion syndrome is predominantly characterized by neuropsychiatric expression. There are implications for pre- and postnatal detection, genetic counseling, and anticipatory care.
Collapse
Affiliation(s)
- Chelsea Lowther
- 1] Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- 1] Cytogenetics Laboratory, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Melvin
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Candice K Silversides
- 1] Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada [2] Division of Obstetric Medicine, Medical Disorders of Pregnancy Program, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Danielle M Andrade
- 1] Division of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada [2] Krembil Neurosciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Joyce So
- 1] Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada [2] Department of Clinical Genetics, Lakeridge Health Oshawa, Oshawa, Ontario, Canada
| | - Hanna Faghfoury
- The Fred A. Litwin and Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anath C Lionel
- 1] The Centre for Applied Genomics and Program in Genomics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christian R Marshall
- 1] The Centre for Applied Genomics and Program in Genomics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada [2] Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- 1] Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada [2] The Centre for Applied Genomics and Program in Genomics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada [3] Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Anne S Bassett
- 1] Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada [2] Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada [3] Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada [4] Department of Psychiatry, University of Toronto and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Huang J, Poon LC, Akolekar R, Choy KW, Leung TY, Nicolaides KH. Is high fetal nuchal translucency associated with submicroscopic chromosomal abnormalities on array CGH? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:620-624. [PMID: 24719361 DOI: 10.1002/uog.13384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To examine the possible association between high fetal nuchal translucency thickness (NT) and pathogenic chromosomal copy number variants (CNVs) detected by array comparative genomic hybridization (CGH) in pregnancies with normal fetal karyotype. METHODS Array CGH was carried out in stored samples of chorionic villi from 215 singleton pregnancies resulting in live births in which chorionic villus sampling at 11-13 weeks' gestation for high fetal NT (≥ 3.5 mm) had demonstrated normal karyotype. RESULTS Median fetal NT was 4.0 (range, 3.5-9.5) mm. Array CGH detected additional CNVs in 1.4% (95% CI, 0.5-4.0) of the cases, but none of these was a known pathogenic CNV. CONCLUSION High fetal NT in the absence of sonographically detectable defects may not be associated with pathogenic CNVs.
Collapse
Affiliation(s)
- J Huang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR
| | | | | | | | | | | |
Collapse
|
36
|
Microarrays as a diagnostic tool in prenatal screening strategies: ethical reflection. Hum Genet 2014; 133:163-72. [PMID: 24077959 DOI: 10.1007/s00439-013-1365-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/18/2013] [Indexed: 01/09/2023]
Abstract
Genomic microarray analysis is increasingly being applied as a prenatal diagnostic tool. Microarrays enable searching the genome at a higher resolution and with higher sensitivity than conventional karyotyping for identifying clinically significant chromosomal abnormalities. As yet, no clear guidelines exist on whether microarrays should be applied prenatally for all indications or only in selected cases such as ultrasound abnormalities, whether a targeted or genome-wide array should be used, and what these should include exactly. In this paper, we present some ethical considerations on the prenatal use of microarrays. There is a strong consensus, at least in Western countries, that the aim of prenatal screening for foetal abnormalities should be understood as facilitating autonomous reproductive choice for prospective parents. The tests offered should be valid and useful to reach that purpose. Against this background, we address several ethical issues raised by the prenatal application of microarrays. First, we argue that the general distinction between a targeted and a genome-wide microarray needs to be scrutinised. Then we examine whether microarrays are 'suitable tests' to serve either a screening or a diagnostic purpose. Given the wide range of findings possibly generated by microarrays, the question arises whether microarrays actually promote or interfere with autonomous reproductive decision-making. Moreover, if variants of unknown clinical significance are identified, this adds to the burden and complexity of reproductive decision-making. We suggest a qualified use of microarrays in the prenatal context.
Collapse
|
37
|
Carey L, Scott F, Murphy K, Mansfield N, Barahona P, Leigh D, Robertson R, McLennan A. Prenatal diagnosis of chromosomal mosaicism in over 1600 cases using array comparative genomic hybridization as a first line test. Prenat Diagn 2014; 34:478-86. [PMID: 24453008 DOI: 10.1002/pd.4332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to assess the detection of chromosomal mosaicism in chorionic villus (CVS) and amniotic fluid (AF) samples using array comparative genomic hybridization (aCGH) and quantitative fluorescent polymerase chain reaction. METHODS All patients undergoing invasive prenatal testing by aCGH at a specialist prenatal screening service were included in the study. A total of 1609 samples (953 CVS and 656 AF) underwent quantitative fluorescent polymerase chain reaction and targeted aCGH without concurrent conventional G-banded karyotyping. RESULTS Chromosomal mosaicism was detected in 20 of the 1609 cases (1.24%); of which 17 were derived from 953 CVS (1.78%), and three from 656 AF (0.46%). Mosaicism was observed at a level as low as 9%. Four cases were likely confined placental mosaicism, 12 were likely true fetal mosaicism, and four cases were unable to be classified into either group. CONCLUSIONS This study demonstrates that the use of aCGH as a first line test is able to identify chromosomal mosaicism down to 9%, which is lower than the level reliably detected using standard cytogenetic analysis. aCGH avoids the disadvantages of culturing, which include culture bias, artifact, and culture failure.
Collapse
|
38
|
Whole-genome array CGH evaluation for replacing prenatal karyotyping in Hong Kong. PLoS One 2014; 9:e87988. [PMID: 24505343 PMCID: PMC3914896 DOI: 10.1371/journal.pone.0087988] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To evaluate the effectiveness of whole-genome array comparative genomic hybridization (aCGH) in prenatal diagnosis in Hong Kong. Methods Array CGH was performed on 220 samples recruited prospectively as the first-tier test study. In addition 150 prenatal samples with abnormal fetal ultrasound findings found to have normal karyotypes were analyzed as a ‘further-test’ study using NimbleGen CGX-135K oligonucleotide arrays. Results Array CGH findings were concordant with conventional cytogenetic results with the exception of one case of triploidy. It was found in the first-tier test study that aCGH detected 20% (44/220) clinically significant copy number variants (CNV), of which 21 were common aneuploidies and 23 had other chromosomal imbalances. There were 3.2% (7/220) samples with CNVs detected by aCGH but not by conventional cytogenetics. In the ‘further-test’ study, the additional diagnostic yield of detecting chromosome imbalance was 6% (9/150). The overall detection for CNVs of unclear clinical significance was 2.7% (10/370) with 0.9% found to be de novo. Eleven loci of common CNVs were found in the local population. Conclusion Whole-genome aCGH offered a higher resolution diagnostic capacity than conventional karyotyping for prenatal diagnosis either as a first-tier test or as a ‘further-test’ for pregnancies with fetal ultrasound anomalies. We propose replacing conventional cytogenetics with aCGH for all pregnancies undergoing invasive diagnostic procedures after excluding common aneuploidies and triploidies by quantitative fluorescent PCR. Conventional cytogenetics can be reserved for visualization of clinically significant CNVs.
Collapse
|
39
|
de Wit MC, Srebniak MI, Govaerts LCP, Van Opstal D, Galjaard RJH, Go ATJI. Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnormalities and a normal karyotype: a systematic review of the literature. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:139-146. [PMID: 23897843 DOI: 10.1002/uog.12575] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To establish the prevalence of submicroscopic genetic copy number variants (CNVs) in fetuses with a structural ultrasound anomaly (restricted to one anatomical system) and a normal karyotype. The aim was to determine the diagnostic and prognostic value of genomic array testing in these pregnancies. METHODS Embase and PubMed databases were systematically searched for all relevant articles on prevalence of pathogenic submicroscopic CNVs in fetuses with ultrasound anomalies. Reported cases were sorted into groups according to anatomical site of the detected ultrasound anomaly. The prevalence of causative submicroscopic CNVs was calculated for each group. RESULTS Combined data of the reviewed studies (n = 18) indicated that fetuses with an ultrasound anomaly restricted to one anatomical system (n = 2220) had a 3.1-7.9% chance of carrying a causative submicroscopic CNV, depending on the anatomical system affected. This chance increased to 9.1% for fetuses with multiple ultrasound anomalies (n = 1139). CONCLUSION This review indicates that 3.1-7.9% of fetuses with a structural ultrasound anomaly restricted to one anatomical system and a normal karyotype will show a submicroscopic CNV, which explains its phenotype and provides information for fetal prognosis. Therefore, we conclude that microarray has considerable diagnostic and prognostic value in these pregnancies.
Collapse
Affiliation(s)
- M C de Wit
- Department of Obstetrics and Gynecology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Thilaganathan B. Ultrasound in obstetrics & gynecology. Editor's note. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:1-2. [PMID: 24395684 DOI: 10.1002/uog.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
41
|
Srebniak MI, Diderich KEM, Govaerts LCP, Joosten M, Riedijk S, Galjaard RJH, Van Opstal D. Types of array findings detectable in cytogenetic diagnosis: a proposal for a generic classification. Eur J Hum Genet 2013; 22:856-8. [PMID: 24193341 DOI: 10.1038/ejhg.2013.254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Marieke Joosten
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sam Riedijk
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Diane Van Opstal
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Shaffer LG, Rosenfeld JA. Microarray-based prenatal diagnosis for the identification of fetal chromosome abnormalities. Expert Rev Mol Diagn 2013; 13:601-11. [PMID: 23895129 DOI: 10.1586/14737159.2013.811912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of prenatal cytogenetic testing is to provide reassurance to the couple seeking testing for their pregnancy, identify chromosome abnormalities in the fetus, if present, and provide treatments and medical management for affected babies. Cytogenetic analysis of banded chromosomes has been the standard for identifying chromosome abnormalities in the fetus for over 40 years. With chromosome analysis, whole chromosome aneuploidies and large structural rearrangements can be identified. The sequencing of the human genome has provided the resources to develop molecular tools that allow higher resolution observations of human chromosomes. The future holds the promise of sequencing that may identify chromosomal imbalances and deleterious single nucleotide variants. This review will focus on the use of genomic microarrays for the testing and identification of chromosome anomalies in prenatal diagnosis and will discuss the future directions of fetal testing.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., Spokane, WA, USA.
| | | |
Collapse
|
43
|
Hui L, Hyett J. Noninvasive prenatal testing for trisomy 21: Challenges for implementation in Australia. Aust N Z J Obstet Gynaecol 2013; 53:416-24. [DOI: 10.1111/ajo.12117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/09/2013] [Indexed: 02/03/2023]
|
44
|
Škerget AE, Herodež SS, Zagorac A, Zagradišnik B, Mujezinović F, Vokač NK. Slovenian five-year experiences with rapid prenatal diagnosis of common chromosome aneuploidies using quantitative-fluorescence polymerase chain reaction. Genet Test Mol Biomarkers 2013; 17:669-74. [PMID: 23786225 DOI: 10.1089/gtmb.2013.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Quantitative-fluorescence polymerase chain reaction (QF-PCR) was used to detect common fetal aneuploidies in pregnancies with increased (maternal age) or high risk (increased nuchal translucency, abnormal fetal ultrasonography, positive biochemical hormone test, or positive family history) for fetal aneuploidy. METHODS The QF-PCR testing was performed on 642 prenatal samples (73.3% amniotic fluids, 26.7% chorionic villus). DNA from prenatal samples were analyzed using an in-house-developed QF-PCR method with 20 micro-satellite markers located on the chromosomes 13, 18, 21, X and Y. Karyotyping of the 392 samples was done and both results were compared. RESULTS 634/642 samples were successfully analyzed. In 7.1% of 634 cases numerical chromosome abnormalities were detected. Results of QF-PCR and karyotyping were compared in 392 cases. In the group, with increased risk of fetal trisomy the specificity and sensitivity of QF-PCR method was 100%. Among cases with high risk for fetal aneuploidy, sensitivity was 100% (86.6%-100%); however, the specificity was lower, 91.1% to 100%, depending on the referral reason. CONCLUSIONS In women, at advanced age QF-PCR can be used alone without karyotyping. In cases with higher risk, especially those with abnormal ultrasound findings, analysis performed only with QF-PCR is not a sufficient diagnostic method.
Collapse
|