1
|
Adjahou S, Syngelaki A, Nanda M, Papavasileiou D, Akolekar R, Nicolaides KH. Routine 36-week scan: prediction of small-for-gestational-age neonate. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2025; 65:20-29. [PMID: 39586023 PMCID: PMC11693828 DOI: 10.1002/uog.29134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVES First, to compare the predictive performance of routine ultrasonographic estimated fetal weight (EFW) at 31 + 0 to 33 + 6 and 35 + 0 to 36 + 6 weeks' gestation for delivery of a small-for-gestational-age (SGA) neonate. Second, to compare the predictive performance of EFW at 36 weeks' gestation for SGA vs fetal growth restriction (FGR) at birth. Third, to compare the predictive performance for delivery of a SGA neonate of EFW < 10th percentile vs a model combining maternal demographic characteristics and elements of medical history with EFW. METHODS This was a retrospective analysis of prospectively collected data in 21 676 women with a singleton pregnancy who had undergone routine ultrasound examination at 31 + 0 to 33 + 6 weeks' gestation and 107 875 women with a singleton pregnancy who had undergone routine ultrasound examination at 35 + 0 to 36 + 6 weeks. Measurements of fetal head circumference, abdominal circumference and femur length were used to calculate EFW according to the Hadlock formula and this was expressed as a percentile according to the Fetal Medicine Foundation fetal and neonatal population weight charts. The same charts were used to diagnose SGA neonates with birth weight < 10th or < 3rd percentile. FGR was defined as birth weight < 10th percentile in addition to Doppler anomalies. For each gestational-age window at screening, the screen-positive rate and detection rate were calculated at different EFW cut-offs between the 10th and 50th percentiles for predicting the delivery of a SGA neonate with birth weight < 10th or < 3rd percentile, either within 2 weeks or at any time after assessment. The areas under the receiver-operating-characteristics curves (AUC) of screening for a SGA neonate by EFW at 31 + 0 to 33 + 6 weeks and at 35 + 0 to 36 + 6 weeks were compared. RESULTS The predictive performance of routine ultrasonographic examination during the third trimester for delivery of a SGA neonate is higher if: first, the scan is carried out at 35 + 0 to 36 + 6 weeks' gestation rather than at 31 + 0 to 33 + 6 weeks; second, the outcome measure is birth weight < 3rd rather than < 10th percentile; third, the outcome measure is FGR rather than SGA; fourth, if delivery occurs within 2 weeks after assessment rather than at any time after assessment; and fifth, prediction is performed using a model that combines maternal demographic characteristics and elements of medical history with EFW rather than EFW < 10th percentile alone. At 35 + 0 to 36 + 6 weeks' gestation, detection of ≥ 85% of SGA neonates with birth weight < 10th percentile born at any time after assessment necessitates the use of EFW < 40th percentile. Screening at this percentile cut-off predicted 95% and 98% of neonates with birth weight < 10th and < 3rd percentile, respectively, born within 2 weeks after assessment, and the respective values for neonates born at any time after assessment were 85% and 93%. CONCLUSION Routine third-trimester ultrasonographic screening for a SGA neonate performs best when the scan is carried out at 35 + 0 to 36 + 6 weeks' gestation, rather than at 31 + 0 to 33 + 6 weeks, and when EFW is combined with maternal risk factors to estimate the patient-specific risk. © 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S. Adjahou
- Fetal Medicine Research InstituteKing's College HospitalLondonUK
| | - A. Syngelaki
- Fetal Medicine Research InstituteKing's College HospitalLondonUK
| | - M. Nanda
- Fetal Medicine Research InstituteKing's College HospitalLondonUK
| | - D. Papavasileiou
- Fetal Medicine Research InstituteKing's College HospitalLondonUK
| | - R. Akolekar
- Fetal Medicine UnitMedway Maritime HospitalGillinghamUK
- Institute of Medical SciencesCanterbury Christ Church UniversityChathamUK
| | - K. H. Nicolaides
- Fetal Medicine Research InstituteKing's College HospitalLondonUK
| |
Collapse
|
2
|
Morris RK, Johnstone E, Lees C, Morton V, Smith G. Investigation and Care of a Small-for-Gestational-Age Fetus and a Growth Restricted Fetus (Green-top Guideline No. 31). BJOG 2024; 131:e31-e80. [PMID: 38740546 DOI: 10.1111/1471-0528.17814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Key recommendations
All women should be assessed at booking (by 14 weeks) for risk factors for fetal growth restriction (FGR) to identify those who require increased surveillance using an agreed pathway [Grade GPP]. Findings at the midtrimester anomaly scan should be incorporated into the fetal growth risk assessment and the risk assessment updated throughout pregnancy. [Grade GPP]
Reduce smoking in pregnancy by identifying women who smoke with the assistance of carbon monoxide (CO) testing and ensuring in‐house treatment from a trained tobacco dependence advisor is offered to all pregnant women who smoke, using an opt‐out referral process. [Grade GPP]
Women at risk of pre‐eclampsia and/or placental dysfunction should take aspirin 150 mg once daily at night from 12+0–36+0 weeks of pregnancy to reduce their chance of small‐for‐gestational‐age (SGA) and FGR. [Grade A]
Uterine artery Dopplers should be carried out between 18+0 and 23+6 weeks for women at high risk of fetal growth disorders [Grade B]. In a woman with normal uterine artery Doppler and normal fetal biometry at the midtrimester scan, serial ultrasound scans for fetal biometry can commence at 32 weeks. Women with an abnormal uterine artery Doppler (mean pulsatility index > 95th centile) should commence ultrasound scans at 24+0–28+6 weeks based on individual history. [Grade B]
Women who are at low risk of FGR should have serial measurement of symphysis fundal height (SFH) at each antenatal appointment after 24+0 weeks of pregnancy (no more frequently than every 2 weeks). The first measurement should be carried out by 28+6 weeks. [Grade C]
Women in the moderate risk category are at risk of late onset FGR so require serial ultrasound scan assessment of fetal growth commencing at 32+0 weeks. For the majority of women, a scan interval of four weeks until birth is appropriate. [Grade B]
Maternity providers should ensure that they clearly identify the reference charts to plot SFH, individual biometry and estimated fetal weight (EFW) measurements to calculate centiles. For individual biometry measurements the method used for measurement should be the same as those used in the development of the individual biometry and fetal growth chart [Grade GPP]. For EFW the Hadlock three parameter model should be used. [Grade C]
Maternity providers should ensure that they have guidance that promotes the use of standard planes of acquisition and calliper placement when performing ultrasound scanning for fetal growth assessment. Quality control of images and measurements should be undertaken. [Grade C]
Ultrasound biometry should be carried out every 2 weeks in fetuses identified to be SGA [Grade C]. Umbilical artery Doppler is the primary surveillance tool and should be carried out at the point of diagnosis of SGA and during follow‐up as a minimum every 2 weeks. [Grade B]
In fetuses with an EFW between the 3rd and 10th centile, other features must be present for birth to be recommended prior to 39+0 weeks, either maternal (maternal medical conditions or concerns regarding fetal movements) or fetal compromise (a diagnosis of FGR based on Doppler assessment, fetal growth velocity or a concern on cardiotocography [CTG]) [Grade C]. For fetuses with an EFW or abdominal circumference less than the 10th centile where FGR has been excluded, birth or the initiation of induction of labour should be considered at 39+0 weeks after discussion with the woman and her partner/family/support network. Birth should occur by 39+6 weeks. [Grade B]
Pregnancies with early FGR (prior to 32+0 weeks) should be monitored and managed with input from tertiary level units with the highest level neonatal care. Care should be multidisciplinary by neonatology and obstetricians with fetal medicine expertise, particularly when extremely preterm (before 28 weeks) [Grade GPP]. Fetal biometry in FGR should be repeated every 2 weeks [Grade B]. Assessment of fetal wellbeing can include multiple modalities but must include computerised CTG and/or ductus venous. [Grade B]
In pregnancies with late FGR, birth should be initiated from 37+0 weeks to be completed by 37+6 weeks [Grade A]. Decisions for birth should be based on fetal wellbeing assessments or maternal indication. [Grade GPP]
Collapse
|
3
|
Roberts AW, Hotra J, Soto E, Pedroza C, Sibai BM, Blackwell SC, Chauhan SP. Indicated vs universal third-trimester ultrasound examination in low-risk pregnancies: a pre-post-intervention study. Am J Obstet Gynecol MFM 2024; 6:101373. [PMID: 38583714 DOI: 10.1016/j.ajogmf.2024.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND In low-risk pregnancies, a third-trimester ultrasound examination is indicated if fundal height measurement and gestational age discrepancy are observed. Despite potential improvement in the detection of ultrasound abnormality, prior trials to date on universal third-trimester ultrasound examination in low-risk pregnancies, compared with indicated ultrasound examination, have not demonstrated improvement in neonatal or maternal adverse outcomes. OBJECTIVE The primary objective was to determine if universal third-trimester ultrasound examination in low-risk pregnancies could attenuate composite neonatal adverse outcomes. The secondary objectives were to compare changes in composite maternal adverse outcomes and detection of abnormalities of fetal growth (fetal growth restriction or large for gestational age) or amniotic fluid (oligohydramnios or polyhydramnios). STUDY DESIGN Our pre-post intervention study at 9 locations included low-risk pregnancies, those without indication for ultrasound examination in the third trimester. Compared with indicated ultrasound in the preimplementation period, in the postimplementation period, all patients were scheduled for ultrasound examination at 36.0-37.6 weeks. In both periods, clinicians intervened on the basis of abnormalities identified. Composite neonatal adverse outcomes included any of: Apgar score ≤5 at 5 minutes, cord pH <7.00, birth trauma (bone fracture or brachial plexus palsy), intubation for >24 hours, hypoxic-ischemic encephalopathy, seizure, sepsis (bacteremia proven with blood culture), meconium aspiration syndrome, intraventricular hemorrhage grade III or IV, periventricular leukomalacia, necrotizing enterocolitis, stillbirth after 36 weeks, or neonatal death within 28 days of birth. Composite maternal adverse outcomes included any of the following: chorioamnionitis, wound infection, estimated blood loss >1000 mL, blood transfusion, deep venous thrombus or pulmonary embolism, admission to intensive care unit, or death. Using Bayesian statistics, we calculated a sample size of 600 individuals in each arm to detect >75% probability of any reduction in primary outcome (80% power; 50% hypothesized risk reduction). RESULTS During the preintervention phase, 747 individuals were identified during the initial ultrasound examination, and among them, 568 (76.0%) met the inclusion criteria at 36.0-37.6 weeks; during the postintervention period, the corresponding numbers were 770 and 661 (85.8%). The rate of identified abnormalities of fetal growth or amniotic fluid increased from between the pre-post intervention period (7.1% vs 22.2%; P<.0001; number needed to diagnose, 7; 95% confidence interval, 5-9). The primary outcome occurred in 15 of 568 (2.6%) individuals in the preintervention and 12 of 661 (1.8%) in the postintervention group (83% probability of risk reduction; posterior relative risk, 0.69 [95% credible interval, 0.34-1.42]). The composite maternal adverse outcomes occurred in 8.6% in the preintervention and 6.5% in the postintervention group (90% probability of risk; posterior relative risk, 0.74 [95% credible interval, 0.49-1.15]). The number needed to treat to reduce composite neonatal adverse outcomes was 121 (95% confidence interval, 40-200). In addition, the number to reduce composite maternal adverse outcomes was 46 (95% confidence interval, 19-74), whereas the number to prevent cesarean delivery was 18 (95% confidence interval, 9-31). CONCLUSION Among low-risk pregnancies, compared with routine care with indicated ultrasound examination, implementation of a universal third-trimester ultrasound examination at 36.0-37.6 weeks attenuated composite neonatal and maternal adverse outcomes.
Collapse
Affiliation(s)
- Aaron W Roberts
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center, Houston, TX (Dr Roberts, Mr Hotra, Drs Soto, Sibai, Blackwell, and Chauhan).
| | - John Hotra
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center, Houston, TX (Dr Roberts, Mr Hotra, Drs Soto, Sibai, Blackwell, and Chauhan)
| | - Eleazar Soto
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center, Houston, TX (Dr Roberts, Mr Hotra, Drs Soto, Sibai, Blackwell, and Chauhan)
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX (Dr Pedroza)
| | - Baha M Sibai
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center, Houston, TX (Dr Roberts, Mr Hotra, Drs Soto, Sibai, Blackwell, and Chauhan)
| | - Sean C Blackwell
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center, Houston, TX (Dr Roberts, Mr Hotra, Drs Soto, Sibai, Blackwell, and Chauhan)
| | - Suneet P Chauhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center, Houston, TX (Dr Roberts, Mr Hotra, Drs Soto, Sibai, Blackwell, and Chauhan)
| |
Collapse
|
4
|
Caradeux J, Martínez-Portilla RJ, Martínez-Egea J, Ávila F, Figueras F. Routine third-trimester ultrasound assessment for intrauterine growth restriction. Am J Obstet Gynecol MFM 2024; 6:101294. [PMID: 38281581 DOI: 10.1016/j.ajogmf.2024.101294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Intrauterine growth restriction significantly impacts perinatal outcomes. Undetected IUGR escalates the risk of adverse outcomes. Serial symphysis-fundal height measurement, a recommended strategy, is insufficient in detecting abnormal fetal growth. Routine third-trimester ultrasounds significantly improve detection rates compared with this approach, but direct high-quality evidence supporting enhanced perinatal outcomes from routine scanning is lacking. In assessing fetal growth, abdominal circumference alone performs comparably to estimated fetal weight. Hadlock formulas demonstrate accurate fetal weight estimation across diverse gestational ages and settings. When choosing growth charts, prescriptive standards (encompassing healthy pregnancies) should be prioritized over descriptive ones. Customized fetal standards may enhance antenatal IUGR detection, but conclusive high-quality evidence is elusive. Emerging observational data suggest that longitudinal fetal growth assessment could predict adverse outcomes better. However, direct randomized trial evidence supporting this remains insufficient.
Collapse
Affiliation(s)
- Javier Caradeux
- Maternal and Fetal Medicine Unit, Department of Obstetrics and Gynecology, Clínica Santa María, Santiago, Chile (Drs Caradeux and Ávila)
| | - Raigam J Martínez-Portilla
- Clinical Research Branch, Evidence-Based Medicine Department, National Institute of Perinatology, Mexico City, Mexico (Dr Martínez-Portilla)
| | - Judit Martínez-Egea
- BCNatal Fetal Medicine Research Center, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Instituto Clínic de Ginecología, Obstetricia i Neonatología, Universitat de Barcelona, Barcelona, Spain (Drs Martínez-Egea and Figueras)
| | - Francisco Ávila
- Maternal and Fetal Medicine Unit, Department of Obstetrics and Gynecology, Clínica Santa María, Santiago, Chile (Drs Caradeux and Ávila)
| | - Francesc Figueras
- BCNatal Fetal Medicine Research Center, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Instituto Clínic de Ginecología, Obstetricia i Neonatología, Universitat de Barcelona, Barcelona, Spain (Drs Martínez-Egea and Figueras).
| |
Collapse
|
5
|
Morales‐Roselló J, Khalil A, Martínez‐Varea A. Management of fetuses with apparent normal growth and abnormal cerebroplacental ratio: A risk-based approach near term. Acta Obstet Gynecol Scand 2024; 103:334-341. [PMID: 38050342 PMCID: PMC10823406 DOI: 10.1111/aogs.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION Cerebroplacental ratio (CPR) has been shown to be an independent predictor of adverse perinatal outcome at term and a marker of failure to reach the growth potential (FRGP) regardless of fetal size, being abnormal in compromised fetuses with birthweight above the 10th centile. The main aim of this study was to propose a risk-based approach for the management of pregnancies with normal estimated fetal weight (EFW) and abnormal CPR near term. MATERIAL AND METHODS This was a retrospective study of 943 pregnancies, that underwent an ultrasound evaluation of EFW and CPR at or beyond 34 weeks. CPR values were converted into multiples of the median (MoM) and EFW into centiles according to local references. Pregnancies were then divided into four groups: normal fetuses (defined as EFW ≥10th centile and CPR ≥0.6765 MoM), small for gestational age (EFW <10th centile and CPR ≥0.6765 MoM), fetal growth restriction (EFW <10th centile and CPR <0.6765 MoM), and fetuses with apparent normal growth (EFW ≥10th centile) and abnormal CPR (<0.6765 MoM), that present FRGP. Intrapartum fetal compromise (IFC) was defined as an abnormal intrapartum cardiotocogram or pH requiring cesarean delivery. Risk comparisons were performed among the four groups, based on the different frequencies of IFC. The risks of IFC were subsequently extrapolated into a gestational age scale, defining the optimal gestation to plan the birth for each of the four groups. RESULTS Fetal growth restriction was the group with the highest frequency of IFC followed by FRGP, small for gestational age, and normal groups. The "a priori" risks of the fetal growth restriction and normal groups were used to determine the limits of two scales. One defining the IFC risk and the other defining the appropriate gestational age for delivery. Extrapolation of the risk between both scales placed the optimal gestational age for delivery at 39 weeks of gestation in the case of FRGP and at 40 weeks in the case of small for gestational age. CONCLUSIONS Fetuses near term may be evaluated according to the CPR and EFW defining four groups that present a progressive risk of IFC. Fetuses in pregnancies complicated by FRGP are likely to benefit from being delivered at 39 weeks of gestation.
Collapse
Affiliation(s)
- José Morales‐Roselló
- Obstetrics and Gynecology ServiceHospital Universitario y Politécnico La FeValenciaSpain
- Department of Pediatrics, Obstetrics and GynecologyUniversidad de ValenciaValenciaSpain
| | - Asma Khalil
- Fetal Medicine Unit, St George's HospitalSt George's University of LondonLondonUK
| | - Alicia Martínez‐Varea
- Obstetrics and Gynecology ServiceHospital Universitario y Politécnico La FeValenciaSpain
- Department of Pediatrics, Obstetrics and GynecologyUniversidad de ValenciaValenciaSpain
| |
Collapse
|
6
|
Kingdom J, Ashwal E, Lausman A, Liauw J, Soliman N, Figueiro-Filho E, Nash C, Bujold E, Melamed N. Directive clinique n o 442 : Retard de croissance intra-utérin : Dépistage, diagnostic et prise en charge en contexte de grossesse monofœtale. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2023; 45:102155. [PMID: 37730301 DOI: 10.1016/j.jogc.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIF Le retard de croissance intra-utérin est une complication obstétricale fréquente qui touche jusqu'à 10 % des grossesses dans la population générale et qui est le plus souvent due à une pathologie placentaire sous-jacente. L'objectif de la présente directive clinique est de fournir des déclarations sommaires et des recommandations pour appuyer un protocole clinique de dépistage, diagnostic et prise en charge du retard de croissance intra-utérin pour les grossesses à risque ou atteintes. POPULATION CIBLE Toutes les patientes enceintes menant une grossesse monofœtale. BéNéFICES, RISQUES ET COûTS: La mise en application des recommandations de la présente directive devrait améliorer la compétence des cliniciens quant à la détection du retard de croissance intra-utérin et à la réalisation des interventions indiquées. DONNéES PROBANTES: La littérature publiée a été colligée par des recherches effectuées jusqu'en septembre 2022 dans les bases de données PubMed, Medline, CINAHL et Cochrane Library en utilisant un vocabulaire contrôlé au moyen de termes MeSH pertinents (fetal growth retardation and small for gestational age) et de mots-clés (fetal growth, restriction, growth retardation, IUGR, FGR, low birth weight, small for gestational age, Doppler, placenta, pathology). Seuls les résultats de revues systématiques, d'essais cliniques randomisés ou comparatifs et d'études observationnelles ont été retenus. La littérature grise a été obtenue par des recherches menées dans des sites Web d'organismes s'intéressant à l'évaluation des technologies dans le domaine de la santé et d'organismes connexes, dans des collections de directives cliniques, des registres d'essais cliniques et des sites Web de sociétés de spécialité médicale nationales et internationales. MéTHODES DE VALIDATION: Les auteurs ont évalué la qualité des données probantes et la force des recommandations en utilisant le cadre méthodologique GRADE (Grading of Recommendations Assessment, Development and Evaluation). Voir l'annexe A en ligne (tableau A1 pour les définitions et tableau A2 pour l'interprétation des recommandations fortes et conditionnelles [faibles]). PROFESSIONNELS CONCERNéS: Obstétriciens, médecins de famille, infirmières, sages-femmes, spécialistes en médecine fœto-maternelle, radiologistes et autres professionnels de la santé qui prodiguent des soins aux patientes enceintes. RéSUMé POUR TWITTER: Mise à jour de la directive sur le dépistage, le diagnostic et la prise en charge du retard de croissance intra-utérin pour les grossesses à risque ou atteintes. DÉCLARATIONS SOMMAIRES: RECOMMANDATIONS: Prédiction du retard de croissance intra-utérin Prévention du retard de croissance intra-utérin Détection du retard de croissance intra-utérin Examens en cas de retard de croissance intra-utérin soupçonné Prise en charge du retard de croissance intra-utérin précoce Prise en charge du retard de croissance intra-utérin tardif Prise en charge du post-partum et consultations préconception.
Collapse
|
7
|
Kingdom J, Ashwal E, Lausman A, Liauw J, Soliman N, Figueiro-Filho E, Nash C, Bujold E, Melamed N. Guideline No. 442: Fetal Growth Restriction: Screening, Diagnosis, and Management in Singleton Pregnancies. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2023; 45:102154. [PMID: 37730302 DOI: 10.1016/j.jogc.2023.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Fetal growth restriction is a common obstetrical complication that affects up to 10% of pregnancies in the general population and is most commonly due to underlying placental diseases. The purpose of this guideline is to provide summary statements and recommendations to support a clinical framework for effective screening, diagnosis, and management of pregnancies that are either at risk of or affected by fetal growth restriction. TARGET POPULATION All pregnant patients with a singleton pregnancy. BENEFITS, HARMS, AND COSTS Implementation of the recommendations in this guideline should increase clinician competency to detect fetal growth restriction and provide appropriate interventions. EVIDENCE Published literature in English was retrieved through searches of PubMed or MEDLINE, CINAHL, and The Cochrane Library through to September 2022 using appropriate controlled vocabulary via MeSH terms (fetal growth retardation and small for gestational age) and key words (fetal growth, restriction, growth retardation, IUGR, FGR, low birth weight, small for gestational age, Doppler, placenta, pathology). Results were restricted to systematic reviews, randomized controlled trials/controlled clinical trials, and observational studies. Grey literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See online Appendix A (Table A1 for definitions and Table A2 for interpretations of strong and conditional [weak] recommendations). INTENDED AUDIENCE Obstetricians, family physicians, nurses, midwives, maternal-fetal medicine specialists, radiologists, and other health care providers who care for pregnant patients. TWEETABLE ABSTRACT Updated guidelines on screening, diagnosis, and management of pregnancies at risk of or affected by FGR. SUMMARY STATEMENTS RECOMMENDATIONS: Prediction of FGR Prevention of FGR Detection of FGR Investigations in Pregnancies with Suspected Fetal Growth Restriction Management of Early-Onset Fetal Growth Restriction Management of Late-Onset FGR Postpartum management and preconception counselling.
Collapse
|
8
|
Dall'Asta A, Kumar S. Prelabor and intrapartum Doppler ultrasound to predict fetal compromise. Am J Obstet Gynecol MFM 2021; 3:100479. [PMID: 34496306 DOI: 10.1016/j.ajogmf.2021.100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
According to current estimates, over 20% of the 4 million neonatal deaths occurring globally every year are related to intrapartum hypoxic complications that happen as a result of uterine contractions against a background of inadequate placental function. Most of such intrapartum complications occur among apparently uncomplicated term pregnancies. Available evidence suggests that current risk-assessment strategies do not adequately identify many of the fetuses vulnerable to periods of intermittent hypoxia that characterize human labor. In this review, we discuss the data available on Doppler ultrasound for the evaluation of placental function before and during labor in appropriately grown fetuses; we also discuss the current strategies for ultrasound-based risk stratification, the physiology of intrapartum compromise, and the potential future treatments to prevent fetal distress in labor and reduce perinatal complications related to birth asphyxia.
Collapse
Affiliation(s)
- Andrea Dall'Asta
- Obstetrics and Gynecology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (Dr Dall'Asta); Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom (Dr Dall'Asta).
| | - Sailesh Kumar
- Mater Research Institute, University of Queensland, Queensland, Australia (Dr Kumar); Faculty of Medicine, The University of Queensland, Queensland, Australia (Dr Kumar)
| |
Collapse
|