• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5071034)   Today's Articles (71)
For: Ansbacher-Feldman Z, Syngelaki A, Meiri H, Cirkin R, Nicolaides KH, Louzoun Y. Machine-learning-based prediction of pre-eclampsia using first-trimester maternal characteristics and biomarkers. Ultrasound Obstet Gynecol 2022;60:739-745. [PMID: 36454636 DOI: 10.1002/uog.26105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/17/2023]
Number Cited by Other Article(s)
1
Wu Y, Shen L, Zhao L, Lin X, Xu M, Tu Z, Huang Y, Kong L, Lin Z, Lin D, Liu L, Wang X, Cao Z, Chen X, Zhou S, Hu W, Huang Y, Chen S, Dongye M, Zhang X, Wang D, Shi D, Wang Z, Wu X, Wang D, Lin H. Noninvasive early prediction of preeclampsia in pregnancy using retinal vascular features. NPJ Digit Med 2025;8:188. [PMID: 40188283 PMCID: PMC11972394 DOI: 10.1038/s41746-025-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025]  Open
2
Giaxi P, Vivilaki V, Sarella A, Harizopoulou V, Gourounti K. Artificial Intelligence and Machine Learning: An Updated Systematic Review of Their Role in Obstetrics and Midwifery. Cureus 2025;17:e80394. [PMID: 40070886 PMCID: PMC11895402 DOI: 10.7759/cureus.80394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/14/2025]  Open
3
Layton AT. Artificial Intelligence and Machine Learning in Preeclampsia. Arterioscler Thromb Vasc Biol 2025;45:165-171. [PMID: 39744839 DOI: 10.1161/atvbaha.124.321673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
4
Jørgensen MM, Bæk R, Sloth JK, Sammour R, Sharabi-Nov A, Vatish M, Meiri H, Sammar M. A novel multiple marker microarray analyzer and methodology to predict major obstetric syndromes using surface markers of circulating extracellular vesicles from maternal plasma. Acta Obstet Gynecol Scand 2025;104:151-163. [PMID: 39607297 DOI: 10.1111/aogs.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
5
Malik V, Agrawal N, Prasad S, Talwar S, Khatuja R, Jain S, Sehgal NP, Malik N, Khatuja J, Madan N. Prediction of Preeclampsia Using Machine Learning: A Systematic Review. Cureus 2024;16:e76095. [PMID: 39834976 PMCID: PMC11743919 DOI: 10.7759/cureus.76095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025]  Open
6
Feng W, Luo Y. Preeclampsia and its prediction: traditional versus contemporary predictive methods. J Matern Fetal Neonatal Med 2024;37:2388171. [PMID: 39107137 DOI: 10.1080/14767058.2024.2388171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
7
Tiruneh SA, Rolnik DL, Teede HJ, Enticott J. Prediction of pre-eclampsia with machine learning approaches: Leveraging important information from routinely collected data. Int J Med Inform 2024;192:105645. [PMID: 39393122 DOI: 10.1016/j.ijmedinf.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
8
Khalil A, Bellesia G, Norton ME, Jacobsson B, Haeri S, Egbert M, Malone FD, Wapner RJ, Roman A, Faro R, Madankumar R, Strong N, Silver RM, Vohra N, Hyett J, MacPherson C, Prigmore B, Ahmed E, Demko Z, Ortiz JB, Souter V, Dar P. The role of cell-free DNA biomarkers and patient data in the early prediction of preeclampsia: an artificial intelligence model. Am J Obstet Gynecol 2024;231:554.e1-554.e18. [PMID: 38432413 DOI: 10.1016/j.ajog.2024.02.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
9
Li Q, Wei X, Wu F, Qin C, Dong J, Chen C, Lin Y. Development and validation of preeclampsia predictive models using key genes from bioinformatics and machine learning approaches. Front Immunol 2024;15:1416297. [PMID: 39544937 PMCID: PMC11560445 DOI: 10.3389/fimmu.2024.1416297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]  Open
10
Nguyen-Hoang L, Sahota DS, Pooh RK, Duan H, Chaiyasit N, Sekizawa A, Shaw SW, Seshadri S, Choolani M, Yapan P, Sim WS, Ma R, Leung WC, Lau SL, Lee NMW, Leung HYH, Meshali T, Meiri H, Louzoun Y, Poon LC. Validation of the first-trimester machine learning model for predicting pre-eclampsia in an Asian population. Int J Gynaecol Obstet 2024;167:350-359. [PMID: 38666305 DOI: 10.1002/ijgo.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 09/25/2024]
11
Tiruneh SA, Vu TTT, Rolnik DL, Teede HJ, Enticott J. Machine Learning Algorithms Versus Classical Regression Models in Pre-Eclampsia Prediction: A Systematic Review. Curr Hypertens Rep 2024;26:309-323. [PMID: 38806766 PMCID: PMC11199280 DOI: 10.1007/s11906-024-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 05/30/2024]
12
Drukker L. The Holy Grail of obstetric ultrasound: can artificial intelligence detect hard-to-identify fetal cardiac anomalies? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024;64:5-9. [PMID: 38949769 DOI: 10.1002/uog.27703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
13
Huang Y, Sun Q, Zhou B, Peng Y, Li J, Li C, Xia Q, Meng L, Shan C, Long W. Lipidomic signatures in patients with early-onset and late-onset Preeclampsia. Metabolomics 2024;20:65. [PMID: 38879866 PMCID: PMC11180640 DOI: 10.1007/s11306-024-02134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/22/2024] [Indexed: 06/19/2024]
14
Li T, Xu M, Wang Y, Wang Y, Tang H, Duan H, Zhao G, Zheng M, Hu Y. Prediction model of preeclampsia using machine learning based methods: a population based cohort study in China. Front Endocrinol (Lausanne) 2024;15:1345573. [PMID: 38919479 PMCID: PMC11198873 DOI: 10.3389/fendo.2024.1345573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/27/2024] [Indexed: 06/27/2024]  Open
15
Pooh RK. First-trimester preterm preeclampsia prediction model for prevention with low-dose aspirin. J Obstet Gynaecol Res 2024;50:793-799. [PMID: 38366809 DOI: 10.1111/jog.15908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
16
Torres-Torres J, Villafan-Bernal JR, Martinez-Portilla RJ, Hidalgo-Carrera JA, Estrada-Gutierrez G, Adalid-Martinez-Cisneros R, Rojas-Zepeda L, Acevedo-Gallegos S, Camarena-Cabrera DM, Cruz-Martínez MY, Espino-Y-Sosa S. Performance of machine-learning approach for prediction of pre-eclampsia in a middle-income country. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024;63:350-357. [PMID: 37774112 DOI: 10.1002/uog.27510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
17
Gil MM, Cuenca-Gómez D, Rolle V, Pertegal M, Díaz C, Revello R, Adiego B, Mendoza M, Molina FS, Santacruz B, Ansbacher-Feldman Z, Meiri H, Martin-Alonso R, Louzoun Y, De Paco Matallana C. Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024;63:68-74. [PMID: 37698356 DOI: 10.1002/uog.27478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
18
Thomas G, Syngelaki A, Hamed K, Perez-Montaño A, Panigassi A, Tuytten R, Nicolaides KH. Preterm preeclampsia screening using biomarkers: combining phenotypic classifiers into robust prediction models. Am J Obstet Gynecol MFM 2023;5:101110. [PMID: 37752025 DOI: 10.1016/j.ajogmf.2023.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023]
19
Eberhard BW, Cohen RY, Rigoni J, Bates DW, Gray KJ, Kovacheva VP. An Interpretable Longitudinal Preeclampsia Risk Prediction Using Machine Learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23293946. [PMID: 37645797 PMCID: PMC10462210 DOI: 10.1101/2023.08.16.23293946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
20
Han L, Holland OJ, Da Silva Costa F, Perkins AV. Potential biomarkers for late-onset and term preeclampsia: A scoping review. Front Physiol 2023;14:1143543. [PMID: 36969613 PMCID: PMC10036383 DOI: 10.3389/fphys.2023.1143543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA