1
|
Zermeño-Acosta M, Sumano H, Villar JLD, Bernad MJ, Gutiérrez L. Pharmacokinetics of doxycycline hyclate in pigs with a new feed premix formulation. J Vet Pharmacol Ther 2024; 47:107-113. [PMID: 38014818 DOI: 10.1111/jvp.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to evaluate the administration of doxycycline hyclate in a long-acting pharmaceutical preparation in pigs when administered either ad libitum as a feed medication or an oral bolus dose. In all instances, the studied dose was 20 mg/kg b.w. A total of 48 healthy crossbred, castrated male pigs (Landrace-Yorkshire) weighing 23 ± 4.3 kg were included in this trial. They were randomly assigned to six groups as follows: two groups for the experimental prototype 1 of doxycycline hyclate administering it ad libitum (Fad-lib) or as forced bolus (Fbolus); two groups for the experimental prototype 2 of doxycycline hyclate as for the former groups (FCad-lib and FCbolus), and two control groups receiving the same dose of doxycycline hyclate, but of a commercial premix, also as previously explained (Cbolus and Cad-lib). Statistical analysis of the mean pharmacokinetic values was carried out with Kruskal-Wallis and Dunn's tests. The relative bioavailability (Fr) of the best prototype, when administered ad libitum (FCad-lib), was five times larger than the reference group (Cadlib). These results allow the proposal that the referred differences achieved in the presented prototypes can mark a notable clinical difference, particularly in pathogens with some resistance.
Collapse
Affiliation(s)
- Mónica Zermeño-Acosta
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, Mexico
| | - Héctor Sumano
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jorge Luna-Del Villar
- Departamento de Cirugía, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, Mexico
| | - Maria Josefa Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Lilia Gutiérrez
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
2
|
Vilaró A, Novell E, Enrique-Tarancon V, Baliellas J, Migura-García L, Fraile L. The Susceptibility Trends of Respiratory and Enteric Porcine Pathogens to Last-Resource Antimicrobials. Antibiotics (Basel) 2023; 12:1575. [PMID: 37998776 PMCID: PMC10668718 DOI: 10.3390/antibiotics12111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Monitoring the antimicrobial susceptibility of last-resource antimicrobials for veterinary pathogens is urgently needed from a one-health perspective. The objective of this study was to analyze the antimicrobial susceptibility trends of Spanish porcine bacteria to quinolones, cephalosporins, and polymyxins. Isolates of Actinobacillus pleuropneumoniae, Pasteurella multocida, and Escherichia coli were isolated from sick pigs from 2019 to 2022. An antimicrobial susceptibility test was determined based on the minimal inhibitory concentration (MIC) following an internationally accepted methodology. The MIC categorization was based on distributing the range of MIC values in four categories, with category one being the most susceptible (lowest MIC value) and category four the least susceptible (highest MIC value). Moreover, clinical susceptibility (susceptible/non-susceptible) was also determined according to the CLSI and EUCAST clinical breakpoints. A logistic and multinomial logistic regression model was used to analyze the susceptibility data for dichotomized and categorized MIC data, respectively, for any pair of antimicrobial/microorganism. In general terms, the antimicrobial susceptibility of pig bacteria to these antimicrobials remained stable or increased in the last four years in Spain. In the case of A. pleuropneumoniae and quinolones, a significant temporal trend was observed where isolates from 2020 had significantly increased odds of being more susceptible than isolates from 2019. In the case of E. coli and polymyxins, a significant temporal trend was observed where isolates from 2020 and 2021 had significantly increased odds of being more susceptible than isolates from 2019 and 2020, respectively. Finally, significant odds of being less susceptible were only observed for cephalosporins and E. coli for 2020 versus 2019, stagnating for the rest of study period. These results provide sound data on critically important antimicrobials in swine medicine.
Collapse
Affiliation(s)
- Anna Vilaró
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | - Elena Novell
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | | | - Jordi Baliellas
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | - Lourdes Migura-García
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain;
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Lorenzo Fraile
- Departament de Ciència Animal, ETSEA, University of Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
3
|
de Jong A, Morrissey I, Rose M, Temmerman R, Klein U, Simjee S, El Garch F. Antimicrobial susceptibility among respiratory tract pathogens isolated from diseased cattle and pigs from different parts of Europe. J Appl Microbiol 2023; 134:lxad132. [PMID: 37391360 DOI: 10.1093/jambio/lxad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
AIMS To survey antibiotic susceptibility of bacteria causing cattle and pig respiratory infections in 10 European countries. METHODS AND RESULTS Non-replicate nasopharyngeal/nasal or lung swabs were collected from animals with acute respiratory signs during 2015-2016. Pasteurella multocida, Mannheimia haemolytica, Histophilus somni from cattle (n = 281), and P. multocida, Actinobacillus pleuropneumoniae, Glaesserella parasuis, Bordetella bronchiseptica, and Streptococcus suis from pigs (n = 593) were isolated. MICs were assessed following CLSI standards and interpreted using veterinary breakpoints where available. Histophilus somni isolates were fully antibiotic susceptible. Bovine P. multocida and M. haemolytica were susceptible to all antibiotics, except tetracycline (11.6%-17.6% resistance). Low macrolide and spectinomycin resistance was observed for P. multocida and M. haemolytica (1.3%-8.8%). Similar susceptibility was observed in pigs, where breakpoints are available. Resistance in P. multocida, A. pleuropneumoniae, and S. suis to ceftiofur, enrofloxacin, and florfenicol was absent or <5%. Tetracycline resistance varied from 10.6% to 21.3%, but was 82.4% in S. suis. Overall multidrug-resistance was low. Antibiotic resistance in 2015-2016 remained similar as in 2009-2012. CONCLUSIONS Low antibiotic resistance was observed among respiratory tract pathogens, except for tetracycline.
Collapse
Affiliation(s)
- Anno de Jong
- VetPath Study Group, CEESA, B-1150 Brussels, Belgium
| | | | - Markus Rose
- VetPath Study Group, CEESA, B-1150 Brussels, Belgium
| | | | - Ulrich Klein
- VetPath Study Group, CEESA, B-1150 Brussels, Belgium
| | | | | |
Collapse
|
4
|
Lagrange J, Amat JP, Ballesteros C, Damborg P, Grönthal T, Haenni M, Jouy E, Kaspar H, Kenny K, Klein B, Lupo A, Madec JY, Salomonsen CM, Müller E, Madero CM, Nilsson O, Norström M, Nykäsenoja S, Overesch G, Pedersen K, Pohjanvirta T, Slowey R, Justo CT, Urdahl AM, Zafeiridis C, Zini E, Cazeau G, Jarrige N, Collineau L. Pilot testing the EARS-Vet surveillance network for antibiotic resistance in bacterial pathogens from animals in the EU/EEA. Front Microbiol 2023; 14:1188423. [PMID: 37283921 PMCID: PMC10239921 DOI: 10.3389/fmicb.2023.1188423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction As part of the EU Joint Action on Antimicrobial Resistance (AMR) and Healthcare-Associated Infections, an initiative has been launched to build the European AMR Surveillance network in veterinary medicine (EARS-Vet). So far, activities included mapping national systems for AMR surveillance in animal bacterial pathogens, and defining the EARS-Vet objectives, scope, and standards. Drawing on these milestones, this study aimed to pilot test EARS-Vet surveillance, namely to (i) assess available data, (ii) perform cross-country analyses, and (iii) identify potential challenges and develop recommendations to improve future data collection and analysis. Methods Eleven partners from nine EU/EEA countries participated and shared available data for the period 2016-2020, representing a total of 140,110 bacterial isolates and 1,302,389 entries (isolate-antibiotic agent combinations). Results Collected data were highly diverse and fragmented. Using a standardized approach and interpretation with epidemiological cut-offs, we were able to jointly analyze AMR trends of 53 combinations of animal host-bacteria-antibiotic categories of interest to EARS-Vet. This work demonstrated substantial variations of resistance levels, both among and within countries (e.g., between animal host species). Discussion Key issues at this stage include the lack of harmonization of antimicrobial susceptibility testing methods used in European surveillance systems and veterinary diagnostic laboratories, the absence of interpretation criteria for many bacteria-antibiotic combinations of interest, and the lack of data from a lot of EU/EEA countries where little or even surveillance currently exists. Still, this pilot study provides a proof-of-concept of what EARS-Vet can achieve. Results form an important basis to shape future systematic data collection and analysis.
Collapse
Affiliation(s)
- Justine Lagrange
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
- Claude Bernard University of Lyon 1, Lyon, France
| | - Jean-Philippe Amat
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Marisa Haenni
- Laboratory of Lyon, Antimicrobial Resistance and Bacterial Virulence Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Eric Jouy
- Laboratory of Ploufragan-Plouzané-Niort, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Kevin Kenny
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | | | - Agnese Lupo
- Laboratory of Lyon, Antimicrobial Resistance and Bacterial Virulence Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Jean-Yves Madec
- Laboratory of Lyon, Antimicrobial Resistance and Bacterial Virulence Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | | | | | | | - Oskar Nilsson
- National Veterinary Institute of Sweden, Uppsala, Sweden
| | | | | | - Gudrun Overesch
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Karl Pedersen
- National Veterinary Institute of Sweden, Uppsala, Sweden
| | | | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | | | | | - Christos Zafeiridis
- Seconded National Expert to the European Commission (DG Health and Food Safety), Ministry of Rural Development and Food of Greece, General Directorate of Veterinary Services, Athens, Greece
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, Italy
- Vetsuisse Faculty, Clinic for Small Animal Internal Medicine, Zurich, Switzerland
- Department of Animal Medicine, Production and Health, University of Padova, Padua, Italy
| | - Géraldine Cazeau
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Nathalie Jarrige
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Lucie Collineau
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| |
Collapse
|
5
|
Ruzante JM, Harris B, Plummer P, Raineri RR, Loy JD, Jacob M, Sahin O, Kreuder AJ. Surveillance of antimicrobial resistance in veterinary medicine in the United States: Current efforts, challenges, and opportunities. Front Vet Sci 2022; 9:1068406. [PMID: 36605768 PMCID: PMC9807758 DOI: 10.3389/fvets.2022.1068406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem facing human, animal, plant, and environmental health by threatening our ability to effectively treat bacterial infections with antimicrobials. In the United States, robust surveillance efforts exist to collect, analyze, and disseminate AMR data in human health care settings. These tools enable the development of effective infection control methods, the detection of trends, and provide the evidence needed to guide stewardship efforts to reduce the potential for emergence and further spread of AMR. However, in veterinary medicine, there are currently no known equivalent tools. This paper reviews efforts in the United States related to surveillance of AMR in veterinary medicine and discusses the challenges and opportunities of using data from veterinary diagnostic laboratories to build a comprehensive AMR surveillance program that will support stewardship efforts and help control AMR in both humans and animals.
Collapse
Affiliation(s)
- Juliana M. Ruzante
- Center for Environmental Health Risk and Sustainability, RTI International, Durham, NC, United States
| | - Beth Harris
- National Animal Health Laboratory Network, National Veterinary Services Laboratories, U. S. Department of Agriculture, Animal and Plant Health Inspection Service, Ames, IA, United States
| | - Paul Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States,National Institute of Antimicrobial Resistance Research and Education, Ames, IA, United States
| | - Raissa R. Raineri
- National Institute of Antimicrobial Resistance Research and Education, Ames, IA, United States,Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Megan Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States,National Institute of Antimicrobial Resistance Research and Education, Ames, IA, United States
| | - Amanda J. Kreuder
- National Institute of Antimicrobial Resistance Research and Education, Ames, IA, United States,Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States,*Correspondence: Amanda J. Kreuder
| |
Collapse
|
6
|
Mecocci S, De Paolis L, Zoccola R, Fruscione F, De Ciucis CG, Chiaradia E, Moccia V, Tognoloni A, Pascucci L, Zoppi S, Zappulli V, Chillemi G, Goria M, Cappelli K, Razzuoli E. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines 2022; 10:3264. [PMID: 36552020 PMCID: PMC9775086 DOI: 10.3390/biomedicines10123264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular Vesicles (EVs) are nano-sized double-lipid-membrane-bound structures, acting mainly as signalling mediators between distant cells and, in particular, modulating the immune response and inflammation of targeted cells. Milk and colostrum contain high amounts of EVs that could be exploited as alternative natural systems in antimicrobial fighting. The aim of this study is to evaluate cow colostrum-derived EVs (colosEVs) for their antimicrobial, anti-inflammatory and immunomodulating effects in vitro to assess their suitability as natural antimicrobial agents as a strategy to cope with the drug resistance problem. ColosEVs were evaluated on a model of neonatal calf diarrhoea caused by Escherichia coli infection, a livestock disease where antibiotic therapy often has poor results. Colostrum from Piedmontese cows was collected within 24 h of calving and colosEVs were immediately isolated. IPEC-J2 cell line was pre-treated with colosEVs for 48 h and then infected with EPEC/NTEC field strains for 2 h. Bacterial adherence and IPEC-J2 gene expression analysis (RT-qPCR) of CXCL8, DEFB1, DEFB4A, TLR4, TLR5, NFKB1, MYD88, CGAS, RIGI and STING were evaluated. The colosEVs pre-treatment significantly reduced the ability of EPEC/NTEC strains to adhere to cell surfaces (p = 0.006), suggesting a role of ColosEVs in modulating host−pathogen interactions. Moreover, our results showed a significant decrease in TLR5 (p < 0.05), CGAS (p < 0.05) and STING (p < 0.01) gene expression in cells that were pre-treated with ColosEVs and then infected, thus highlighting a potential antimicrobial activity of ColosEVs. This is the first preliminarily study investigating ColosEV immunomodulatory and anti-inflammatory effects on an in vitro model of neonatal calf diarrhoea, showing its potential as a therapeutic and prophylactic tool.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Roberto Zoccola
- S.C. Biotecnologie Applicate alle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | | | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Simona Zoppi
- S.C. Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Maria Goria
- S.C. Biotecnologie Applicate alle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
7
|
Mader R. Defining the scope of the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet): a bottom-up and One Health approach. J Antimicrob Chemother 2022; 77:816-826. [PMID: 35022739 PMCID: PMC8864999 DOI: 10.1093/jac/dkab462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. OBJECTIVES To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. METHODS The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). RESULTS EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. CONCLUSIONS A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve.
Collapse
Affiliation(s)
- Rodolphe Mader
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, 31 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
8
|
Mesa-Varona O, Boone I, Flor M, Eckmanns T, Kaspar H, Grobbel M, Tenhagen BA. Comparison of Consumption Data and Phenotypical Antimicrobial Resistance in E. coli Isolates of Human Urinary Samples and of Weaning and Fattening Pigs from Surveillance and Monitoring Systems in Germany. Antibiotics (Basel) 2021; 11:antibiotics11010028. [PMID: 35052905 PMCID: PMC8772873 DOI: 10.3390/antibiotics11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance (AMR) data from humans are mostly collected from clinical isolates, whereas from livestock data also exist from colonizing pathogens. In Germany, livestock data are collected from clinical and nonclinical isolates. We compared resistance levels of clinical and nonclinical isolates of Escherichia coli from weaning and fattening pigs with clinical outpatient isolates of humans from urban and rural areas. We also studied the association of AMR with available antimicrobial use (AMU) data from humans and pigs. Differences between rural and urban isolates were minor and did not affect the comparison between human and pig isolates. We found higher resistance levels to most antimicrobials in human isolates compared to nonclinical isolates of fattening pigs. Resistance to ampicillin, however, was significantly more frequent in clinical isolates of fattening pigs and in clinical and nonclinical isolates of weaning pigs compared to isolates from humans. The opposite was observed for ciprofloxacin. Co-trimoxazole resistance proportions were higher in clinical isolates of weaning and fattening pigs as compared to isolates from humans. Resistance proportions were higher in clinical isolates than in nonclinical isolates from pigs of the same age group and were also higher in weaner than in fattening pigs. Significant associations of AMU and AMR were found for gentamicin resistance and aminoglycoside use in humans (borderline) and for ampicillin resistance in clinical isolates and penicillin use in fattening pigs. In summary, we found significant differences between isolates from all populations, requiring more detailed analyses supported by molecular data and better harmonized data on AMU and AMR.
Collapse
Affiliation(s)
- Octavio Mesa-Varona
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
- Correspondence:
| | - Ides Boone
- Department for Infectious Disease Epidemiology, Robert Koch Institute (RKI), 13353 Berlin, Germany; (I.B.); (T.E.)
| | - Matthias Flor
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
| | - Tim Eckmanns
- Department for Infectious Disease Epidemiology, Robert Koch Institute (RKI), 13353 Berlin, Germany; (I.B.); (T.E.)
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Reference Laboratories, Resistance to Antibiotics Unit Monitoring of Resistance to Antibiotics, Department Method Standardization, 12277 Berlin, Germany;
| | - Mirjam Grobbel
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
| |
Collapse
|
9
|
Li Z, Tang L, Liu N, Zhang F, Liu X, Jiang Q, Chen J, Ma X. Comparative Effects of Compound Enzyme and Antibiotics on Growth Performance, Nutrient Digestibility, Blood Biochemical Index, and Intestinal Health in Weaned Pigs. Front Microbiol 2021; 12:768767. [PMID: 34777322 PMCID: PMC8586506 DOI: 10.3389/fmicb.2021.768767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
This experiment aims to explore the effects of compound enzyme preparation substituting chlortetracycline on growth performance, serum immune markers, and antioxidant capacity and intestinal health in weaned piglets. A total of twenty-four 28-day-old “Duroc × Landrace × Yorkshire” weaned piglets with an average initial weight of 7.25 ± 0.25 kg were randomly divided into three groups according to their body weight, with eight replicates in each group and one pig in each replicate. The three dietary treatments were basal diet (CON), basal diet + 1,000 mg/kg compound enzyme preparation (cellulase 4,000 IU/g, α-amylase 1,000 IU/g, β-glucanase 150 IU/g, and neutral protease 3,000 IU/g, CE), and basal diet + 75 mg/kg chlortetracycline (CTC). The animal experiment lasted for 28 days and was divided into two stages: the early stage (0–14 days) and the late stage (15–28 days). The results showed that (1) compared with the CON, the CE and CTC significantly increased the ADG of weaned piglets during the early and whole period of experiment (p < 0.05), decreased the F:G in the whole experiment period (p < 0.05), and diarrhea rate in the early stage (p < 0.01). (2) Compared with the CON, the apparent total tract digestibility of ADF and NDF was significantly increased in pigs fed the CE diet in the early and late stages of experiment (p < 0.05) with no significant difference compared with the CTC. (3) Compared with the CON, the concentrations of serum IgA and SOD in weaned piglets were significantly increased in the CE group in the early stage of the experiment (p < 0.05). (4) Compared with the CON group, the acetic acid, propionic acid, and total VFA contents in cecum and colon segments were elevated in the CE group (p < 0.05) with no significant difference compared with the CTC. (5) Compared with the CON group, the villus height of duodenum and jejunum and the ratio of villus height to recess depth of ileum were increased in the CE and CTC group (p < 0.05). (6) Compared with the CON group, the abundance of Lactobacillus significantly increased (p < 0.01) while the abundance of Escherichia coli decreased in the CE group and CTC group (p < 0.01). In conclusion, CE preparation instead of CTC can significantly improve the nutrient digestibility, the immunity, antioxidant capacity, and intestinal health of pigs, which may contribute to the improved growth performance of piglets.
Collapse
Affiliation(s)
- Zhiqing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lizi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Nian Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|