1
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
2
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Antitumor Profile of Carbon-Bridged Steroids (CBS) and Triterpenoids. Mar Drugs 2021; 19:324. [PMID: 34205074 PMCID: PMC8228860 DOI: 10.3390/md19060324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
3
|
Pounina TA, Gloriozova TA, Savidov N, Dembitsky VM. Sulfated and Sulfur-Containing Steroids and Their Pharmacological Profile. Mar Drugs 2021; 19:240. [PMID: 33923288 PMCID: PMC8145587 DOI: 10.3390/md19050240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The review focuses on sulfated steroids that have been isolated from seaweeds, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. Sulfur-containing steroids and triterpenoids are sourced from sedentary marine coelenterates, plants, marine sediments, crude oil, and other geological deposits. The review presents the pharmacological profile of sulfated steroids, sulfur-containing steroids, and triterpenoids, which is based on data obtained using the PASS program. In addition, several semi-synthetic and synthetic epithio steroids, which represent a rare group of bioactive lipids that have not yet been found in nature, but possess a high level of antitumor activity, were included in this review for the comparative pharmacological characterization of this class of compounds. About 140 steroids and triterpenoids are presented in this review, which demonstrate a wide range of biological activities. Therefore, out of 71 sulfated steroids, thirteen show strong antitumor activity with a confidence level of more than 90%, out of 50 sulfur-containing steroids, only four show strong antitumor activity with a confidence level of more than 93%, and out of eighteen epithio steroids, thirteen steroids show strong antitumor activity with a confidence level of 91% to 97.4%.
Collapse
Affiliation(s)
- Tatyana A. Pounina
- Far Eastern Geological Institute, Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia
| |
Collapse
|
4
|
Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Mar Drugs 2020; 18:613. [PMID: 33276570 PMCID: PMC7761492 DOI: 10.3390/md18120613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Valery M. Dembitsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
5
|
Dembitsky VM. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog Lipid Res 2020; 79:101048. [PMID: 32603672 DOI: 10.1016/j.plipres.2020.101048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
In this review, steroids with a tertiary butyl group, which are usually called neo steroids, are a small group of natural lipids isolated from higher plants, fungi, marine sponges, and yeast. In addition, steroids with a tertiary butyl group have been synthesized in some laboratories in Canada, USA, Europe, and Japan and their biological activity was studied. Some natural neo steroids demonstrate antitumor or hepatoprotective activities. In addition, synthetic neo steroids exhibit anticancer and neuroprotective properties. However, to confirm the above data, both practical and clinical experimental studies are necessary. Nevertheless, the results may be useful for pharmacologists, chemists, biochemists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| |
Collapse
|
6
|
Vil VA, Terent'ev AO, Savidov N, Gloriozova TA, Poroikov VV, Pounina TA, Dembitsky VM. Hydroperoxy steroids and triterpenoids derived from plant and fungi: Origin, structures and biological activities. J Steroid Biochem Mol Biol 2019; 190:76-87. [PMID: 30923015 DOI: 10.1016/j.jsbmb.2019.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/18/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
Abstract
Hydroperoxides (R-OOH) represent a small family of natural metabolites that have been isolated from higher plants, fungi, and marine organisms. This paper is devoted to the distribution of hydroperoxides in plants, fungi and terrestrial fungal endophytes and their biological activity. Hydroperoxides of plants demonstrate a wide range of biological activities however, antineoplastic and anti-ulcerative are most characteristic with confidence from 91 to 98 percent. For hydroperoxides from fungi, the dominant are antineoplastic and anti-hypercholesterolemic activities with confidence from 89 to 92 percent. Very interesting activity was found for some triterpenoid hydroperoxides, which is characterized as a treatment for the symptoms of dementia. The norlupane hydroperoxide shows activity for the treatment of dementia. It is interesting that the reliability of this activity was very high 97.2%. According to our preliminary data, the norlupane hydroperoxide is apparently the first natural metabolite that showed almost 100 percent activity for the treatment of dementia. However, to confirm these data requires practical and clinical experimental work.
Collapse
Affiliation(s)
- Vera A Vil
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nick Savidov
- Centre for Applied Research and Innovation, Lethbridge College, 3000 College Drive South Lethbridge, AB, T1K 1L6, Canada
| | | | | | - Tatyana A Pounina
- Far Eastern Geological Institute, Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russia
| | - Valery M Dembitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia; Centre for Applied Research and Innovation, Lethbridge College, 3000 College Drive South Lethbridge, AB, T1K 1L6, Canada; National Scientific Center of Marine Biology, 690041, Vladivostok, Russia.
| |
Collapse
|