1
|
Chen B, Zhang Q, Wang S, Guan XA, Luo WX, Li DF, He Y, Huang SJ, Zhou YT, Zhao JL, He L. Establishment of the auxin inducible degron system for Babesia duncani: a conditional knockdown tool to study precise protein regulation in Babesia spp. Parasit Vectors 2024; 17:446. [PMID: 39478572 PMCID: PMC11526643 DOI: 10.1186/s13071-024-06458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Babesia duncani is a pathogen within the phylum Apicomplexa that causes human babesiosis. It poses a significant threat to public health, as it can be transmitted not only through tick bites but also via blood transfusion. Consequently, an understanding of the gene functions of this pathogen is necessary for the development of drugs and vaccines. However, the absence of conditional gene knockdown tools has hindered the research on this pathogen. The auxin-inducible degron (AID) system is a rapid, reversible conditional knockdown system widely used in gene function studies. Thus, there is an urgent need to establish the AID system in B. duncani to study essential gene functions. METHODS The endogenous genes of the Skp1-Cullin-F-box (SCF) complex in B. duncani were identified and confirmed through multiple sequence alignment and conserved domain analysis. The expression of the F-box protein TIR1 from Oryza sativa (OsTIR1) was achieved by constructing a transgenic parasite strain using a homologous recombination strategy. Polymerase chain reaction (PCR), western blot, and indirect immunofluorescence assay (IFA) were used to confirm the correct monoclonal parasite strain. The degradation of enhanced green fluorescent protein (eGFP) tagged with an AID degron was detected through western blot and live-cell fluorescence microscopy after treatment of indole-3-acetic acid (IAA). RESULTS In this study, Skp1, Cul1, and Rbx1 of the SCF complex in B. duncani were identified through sequence alignment and domain analysis. A pure BdTIR1 strain with expression of the OsTIR1 gene was constructed through homologous recombination and confirmed. This strain showed no significant differences from the wild type (WT) in terms of growth rate and proportions of different parasite forms. The eGFP tagged with an AID degron was successfully induced for degradation using 500 μM IAA. Grayscale analysis of western blot indicated a 61.3% reduction in eGFP expression levels, while fluorescence intensity analysis showed a 77.5% decrease in fluorescence intensity. Increasing the IAA concentration to 2 mM accelerated eGFP degradation and enhanced the extent of degradation. CONCLUSIONS This study demonstrated the functionality of the AID system in regulating protein levels by inducing rapid degradation of eGFP using IAA, providing an important research tool for studying essential gene functions related to invasion, egress, and virulence of B. duncani. Moreover, it also offers a construction strategy for apicomplexan parasites that have not developed an AID system.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Qi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xing-Ai Guan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Wan-Xin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Dong-Fang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yue He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Shu-Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Ya-Ting Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Nian Y, Zhang S, Wang J, Li X, Wang Y, Liu J, Liu Z, Ye Y, You C, Yin H, Guan G. A novel and low-cost cross-priming amplification assay for rapid detection of Babesia duncani infection. Exp Parasitol 2024; 265:108813. [PMID: 39117169 DOI: 10.1016/j.exppara.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Babesia duncani, responsible for human babesiosis, is one of the most important tick-borne intraerythrocytic pathogens. Traditionally, babesiosis is definitively diagnosed by detecting parasite DNA in blood samples and examining Babesia parasites in Giemsa-stained peripheral blood smears. Although these techniques are valuable for determining Babesia duncani, they are often time-consuming and laborious. Therefore, developing rapid and reliable B. duncani identification assays is essential for subsequent epidemiological investigations and prevention and control. In this study, a cross-priming amplification (CPA) assay was developed, combined with a vertical flow visualization strip, to rapidly and accurately detect B. duncani infection. The detection limit of this method was as low as 0.98 pg/μl of genomic DNA from B. duncani merozoites per reaction at 59 °C for 60 min. There were no cross-reactions between B. duncani and other piroplasms infective to humans and mammals. A total of 592 blood samples from patients bitten by ticks and experimental infected hamsters were accurately assessed using CPA assay. The average cost of the CPA assay is as low as approximately $ 0.2 per person. These findings indicate that the CPA assay may therefore be a rapid screening tool for detection B. duncani infection, based on its accuracy, speed, and cost-effectiveness, particularly in resource-limited regions with a high prevalence of human babesiosis.
Collapse
Affiliation(s)
- Yueli Nian
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Shangdi Zhang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yanbo Wang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China
| | - Junlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zeen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yuxin Ye
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
3
|
Kim HJ, Han B, Lee HI, Ju JW, Shin HI. Current Status of Trypanosoma grosi and Babesia microti in Small Mammals in the Republic of Korea. Animals (Basel) 2024; 14:989. [PMID: 38612228 PMCID: PMC11010837 DOI: 10.3390/ani14070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Small mammals, such as rodents and shrews, are natural reservoir hosts of zoonotic diseases, including parasitic protozoa. To assess the risk of rodent-borne parasitic protozoa in the Republic of Korea (ROK), this study investigated the status of parasitic protozoa, namely Trypanosoma, Babesia, and Theileria, in small mammals. In total, 331 blood samples from small mammals were analyzed for parasites using PCR and sequenced. Samples were positive for Trypanosoma grosi (23.9%; n = 79) and Babesia microti (10%; n = 33) but not Theileria. Small mammals from Seogwipo-si showed the highest infection rate of T. grosi (48.4%), while the highest B. microti infection rate was observed in those from Gangneung-si (25.6%). Sequence data revealed T. grosi to be of the AKHA strain. Phylogenetic analysis of B. microti revealed the US and Kobe genotypes. B. microti US-type-infected small mammals were detected throughout the country, but the Kobe type was only detected in Seogwipo-si. To our knowledge, this is the first nationwide survey that confirmed T. grosi and B. microti infections at the species level in small mammals in the ROK and identified the Kobe type of B. microti. These results provide valuable information for further molecular epidemiological studies on these parasites.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Il Shin
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea; (H.J.K.); (B.H.); (H.-I.L.); (J.-W.J.)
| |
Collapse
|
4
|
Ashour R, Hamza D, Kadry M, Sabry MA. Molecular detection of Babesia microti in dromedary camels in Egypt. Trop Anim Health Prod 2023; 55:91. [PMID: 36808565 PMCID: PMC9941264 DOI: 10.1007/s11250-023-03507-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Babesia microti (Apicomplexa: Piroplasmida) causes a medically important tick-borne zoonotic protozoan disease. Egyptian camels are susceptible to Babesia infection; however, just a few cases have been documented. This study aimed to identify Babesia species, specifically Babesia microti, and their genetic diversity in dromedary camels in Egypt and associated hard ticks. Blood and hard tick samples were taken from 133 infested dromedary camels slaughtered in Cairo and Giza abattoirs. The study was conducted from February to November 2021. The 18S rRNA gene was amplified by polymerase chain reaction (PCR) to identify Babesia species. Nested PCR targeting the β-tubulin gene was used to identify B. microti. The PCR results were confirmed by DNA sequencing. Phylogenetic analysis based on the ß-tubulin gene was used to detect and genotype B. microti. Three tick genera were identified in infested camels (Hyalomma, Rhipicephalus, and Amblyomma). Babesia species were detected in 3 out of 133 blood samples (2.3%), while Babesia spp. were not detected in hard ticks by using the 18S rRNA gene. B. microti was identified in 9 out of 133 blood samples (6.8%) and isolated from Rhipicephalus annulatus and Amblyomma cohaerens by the β-tubulin gene. The phylogenetic analysis of the β-tubulin gene revealed that USA-type B. microti was prevalent in Egyptian camels. The results of this study suggested that the Egyptian camels may be infected with Babesia spp. and the zoonotic B. microti strains, which pose a potential risk to public health.
Collapse
Affiliation(s)
- Radwa Ashour
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Mona Kadry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Maha A. Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| |
Collapse
|
5
|
Wang S, Li D, Chen F, Jiang W, Luo W, Zhu G, Zhao J, He L. Establishment of a Transient and Stable Transfection System for Babesia duncani Using a Homologous Recombination Strategy. Front Cell Infect Microbiol 2022; 12:844498. [PMID: 35463640 PMCID: PMC9019647 DOI: 10.3389/fcimb.2022.844498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic modification provides an invaluable molecular tool to dissect the biology and pathogenesis of pathogens. However, no report is available about the genetic modification of Babesia duncani, a pathogen responsible for human babesiosis that is widespread in North America, suggesting the necessity to develop a genetic manipulation method to improve the strategies for studying and understanding the biology of protozoan pathogens. The establishment of a genetic modification method requires promoters, selectable markers, and reporter genes. Here, the double-copy gene elongation factor-1α (ef-1α) and its promoters were amplified by conventional PCR and confirmed by sequencing. We established a transient transfection system by using the ef-1αB promoter and the reporter gene mCherry and achieved stable transfection through homologous recombination to integrate the selection marker hDHFR-eGFP into the parasite genome. The potential of this genetic modification method was tested by knocking out the thioredoxin peroxidase-1 (TPX-1) gene, and under the drug pressure of 5 nM WR99210, 96.3% of the parasites were observed to express green fluorescence protein (eGFP) by flow cytometry at day 7 post-transfection. Additionally, the clone line of the TPX-1 knockout parasite was successfully obtained by the limiting dilution method. This study provided a transfection method for B. duncani, which may facilitate gene function research and vaccine development of B. duncani.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangwei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weijun Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lan He,
| |
Collapse
|
6
|
Kim TY, Kim SY, Kim TK, Lee HI, Cho SH, Lee WG, Kim H. Molecular evidence of zoonotic Babesia species, other than B. microti, in ixodid ticks collected from small mammals in the Republic of Korea. Vet Med Sci 2021; 7:2427-2433. [PMID: 34492740 PMCID: PMC8604135 DOI: 10.1002/vms3.581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The occurrence of tick‐borne infectious diseases, including zoonotic babesiosis, has become a serious concern in recent years. In this study, we detected Babesia spp. using polymerase chain reaction (PCR) amplification of the 18S rRNA of the parasites isolated from ixodid ticks collected from small mammals in the Republic of Korea (ROK). Sequence analysis of the PCR amplicon revealed the presence of B. duncani, B. venatorum, B. capreoli/divergens, and, the most prevalent, B. microti in the ticks. The molecular phylogenetic analysis showed that the four species‐specific18S rRNA sequences clustered in four distinct clades. This is the first study to provide molecular evidence for the presence of zoonotic Babesia spp. other than B. microti in ticks in the ROK.
Collapse
Affiliation(s)
- Tae Yun Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Seong Yoon Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Tae-Kyu Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Hee Il Lee
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Wook-Gyo Lee
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Hyunwoo Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| |
Collapse
|