1
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
2
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
3
|
Dehghanian Reyhan V, Ghafouri F, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Comparative Transcriptome and circRNA-lncRNA-miRNA-mRNA ceRNA Regulatory Network Analyses Identify Molecular Mechanisms Associated with Intramuscular Fat Content in Beef Cattle. Animals (Basel) 2023; 13:2598. [PMID: 37627391 PMCID: PMC10451991 DOI: 10.3390/ani13162598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intramuscular fat content (IMF), one of the most important carcass traits in beef cattle, is controlled by complex regulatory factors. At present, molecular mechanisms involved in regulating IMF and fat metabolism in beef cattle are not well understood. Our objective was to integrate comparative transcriptomic and competing endogenous RNA (ceRNA) network analyses to identify candidate messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of longissimus dorsi muscle (LDM) tissue for IMF and fat metabolism of 5 beef cattle breeds (Angus, Chinese Simmental, Luxi, Nanyang, and Shandong Black). In total, 34 circRNAs, 57 lncRNAs, 15 miRNAs, and 374 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Furthermore, 7 key subnets with 16 circRNAs, 43 lncRNAs, 7 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 48, 13, and 28 significantly enriched GO terms related to IMF in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways associated with IMF and fat metabolism that were enriched included metabolic, calcium, cGMP-PKG, thyroid hormone, and oxytocin signaling pathways. Moreover, MCU, CYB5R1, and BAG3 genes were common among the 10 comparative groups defined as important candidate marker genes for fat metabolism in beef cattle. Contributions of transcriptome profiles from various beef breeds and a competing endogenous RNA (ceRNA) regulatory network underlying phenotypic differences in IMF provided novel insights into molecular mechanisms associated with meat quality.
Collapse
Affiliation(s)
- Vahid Dehghanian Reyhan
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Farzad Ghafouri
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
| |
Collapse
|
4
|
Zhang S, Jiang E, Kang Z, Bi Y, Liu H, Xu H, Wang Z, Lei C, Chen H, Lan X. CircRNA Profiling Reveals an Abundant circBDP1 that Regulates Bovine Fat Development by Sponging miR-181b/miR-204 Targeting Sirt1/TRARG1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14312-14328. [PMID: 36269615 DOI: 10.1021/acs.jafc.2c05939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proliferation and differentiation of preadipocytes is an important factor determining bovine fat development, which is closely related to the feed conversion ratio, carcass traits, and beef quality. The purpose of this study was to identify the effects of candidate circRNA and miRNA on the proliferation and differentiation of bovine preadipocytes in order to provide basic materials for molecular breeding in cattle. circRNA sequencing was performed on bovine adipocyte samples at different differentiation time points, and a total of 1830 differentially expressed circRNAs were identified. Among them, circBDP1, derived from the bovine BDP1 gene, has potential binding sites for miR-204 (known as a regulator of bovine fat development) and miR-181b, which gives us a hint that circBDP1 may regulate bovine fat development by adsorbing miR-204 and miR-181b. Here, our results revealed that circBDP1 overexpression promoted the proliferation and differentiation of bovine preadipocytes. The miRNA profile of bovine adipocytes at different differentiation time points was also analyzed using the small RNA sequencing method, and a total of 89 differentially expressed miRNAs were identified, including miR-204 and miR-181b. As expected, dual-luciferase reporter results showed that circBDP1 competitively adsorbed miR-181b and miR-204. Overexpression and interference of miR-181b in bovine preadipocytes and 3T3-L1 showed that miR-181b promoted the proliferation and differentiation of preadipocytes. Further results displayed that miR-181b and miR-204 simultaneously targeted the SIRT1 gene, and miR-204 also targeted the 3' UTR region of the TRARG1 gene. In summary, this study found that miR-181b and miR-204 were involved in fat development by targeting SIRT1 and TRARG1. The results of this study will lay a foundation for the research of fat development and beef cattle industry.
Collapse
Affiliation(s)
- Sihuan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei230036, P.R. China
| | - Enhui Jiang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100193, China
| | - Yi Bi
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hongfei Liu
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Han Xu
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong510006, China
| | - Zhen Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Chuzhao Lei
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| |
Collapse
|