1
|
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Hernandez R. A Cuban Campesino in Chemistry's Academic Court. J Phys Chem B 2021; 125:8261-8267. [PMID: 34313115 DOI: 10.1021/acs.jpcb.1c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Melby ES, Allen C, Foreman-Ortiz IU, Caudill ER, Kuech TR, Vartanian AM, Zhang X, Murphy CJ, Hernandez R, Pedersen JA. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10793-10805. [PMID: 30102857 DOI: 10.1021/acs.langmuir.8b02060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular understanding of the impact of nanomaterials on cell membranes is critical for the prediction of effects that span environmental exposures to nanoenabled therapies. Experimental and computational studies employing phospholipid bilayers as model systems for membranes have yielded important insights but lack the biomolecular complexity of actual membranes. Here, we increase model membrane complexity by incorporating the peripheral membrane protein cytochrome c and studying the interactions of the resulting membrane systems with two types of anionic nanoparticles. Experimental and computational studies reveal that the extent of cytochrome c binding to supported lipid bilayers depends on anionic phospholipid number density and headgroup chemistry. Gold nanoparticles functionalized with short, anionic ligands or wrapped with an anionic polymer do not interact with silica-supported bilayers composed solely of phospholipids. Strikingly, when cytochrome c was bound to these bilayers, nanoparticles functionalized with short anionic ligands attached to model biomembranes in amounts proportional to the number of bound cytochrome c molecules. In contrast, anionic polymer-wrapped gold nanoparticles appeared to remove cytochrome c from supported lipid bilayers in a manner inversely proportional to the strength of cytochrome c binding to the bilayer; this reflects the removal of a weakly bound pool of cytochrome c, as suggested by molecular dynamics simulations. These results highlight the importance of the surface chemistry of both the nanoparticle and the membrane in predicting nano-bio interactions.
Collapse
Affiliation(s)
- Eric S Melby
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Environmental and Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| | - Caley Allen
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Isabel U Foreman-Ortiz
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Emily R Caudill
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Thomas R Kuech
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Ariane M Vartanian
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Xi Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Catherine J Murphy
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Rigoberto Hernandez
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Joel A Pedersen
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
4
|
Cui Q, Hernandez R, Mason SE, Frauenheim T, Pedersen JA, Geiger F. Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. J Phys Chem B 2016; 120:7297-306. [PMID: 27388532 DOI: 10.1021/acs.jpcb.6b03976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For assistance in the design of the next generation of nanomaterials that are functional and have minimal health and safety concerns, it is imperative to establish causality, rather than correlations, in how properties of nanomaterials determine biological and environmental outcomes. Due to the vast design space available and the complexity of nano/bio interfaces, theoretical and computational studies are expected to play a major role in this context. In this minireview, we highlight opportunities and pressing challenges for theoretical and computational chemistry approaches to explore the relevant physicochemical processes that span broad length and time scales. We focus discussions on a bottom-up framework that relies on the determination of correct intermolecular forces, accurate molecular dynamics, and coarse-graining procedures to systematically bridge the scales, although top-down approaches are also effective at providing insights for many problems such as the effects of nanoparticles on biological membranes.
Collapse
Affiliation(s)
- Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Sara E Mason
- Department of Chemistry, University of Iowa , E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Univ of Bremen , D-28359 Bremen, Germany
| | - Joel A Pedersen
- Departments of Soil Science, Civil & Environmental Engineering, and Chemistry, University of Wisconsin-Madison , 1525 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Franz Geiger
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60201, United States
| |
Collapse
|
5
|
Bermudez M, Mortier J, Rakers C, Sydow D, Wolber G. More than a look into a crystal ball: protein structure elucidation guided by molecular dynamics simulations. Drug Discov Today 2016; 21:1799-1805. [PMID: 27417339 DOI: 10.1016/j.drudis.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/20/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
The 'form follows function' principle implies that a structural determination of protein structures is indispensable to understand proteins in their biological roles. However, experimental methods still show shortcomings in the description of the dynamic properties of proteins. Therefore, molecular dynamics (MD) simulations represent an essential tool for structural biology to investigate proteins as flexible and dynamic entities. Here, we will give an overview on the impact of MD simulations on structural investigations, including studies that aim at a prediction of protein-folding pathways, protein-assembly processes and the sampling of conformational space by computational means.
Collapse
Affiliation(s)
- Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| | - Jeremie Mortier
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Christin Rakers
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Dominique Sydow
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| |
Collapse
|
6
|
Junginger A, Garcia-Muller PL, Borondo F, Benito RM, Hernandez R. Solvated molecular dynamics of LiCN isomerization: All-atom argon solvent versus a generalized Langevin bath. J Chem Phys 2016; 144:024104. [PMID: 26772551 DOI: 10.1063/1.4939480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The reaction rate rises and falls with increasing density or friction when a molecule is activated by collisions with the solvent particles. This so-called Kramers turnover has recently been observed in the isomerization reaction of LiCN in an argon bath. In this paper, we demonstrate by direct comparison with those results that a reduced-dimensional (generalized) Langevin description gives rise to similar reaction dynamics as the corresponding (computationally expensive) full molecular dynamics calculations. We show that the density distributions within the Langevin description are in direct agreement with the full molecular dynamics results and that the turnover in the reaction rates is reproduced qualitatively and quantitatively at different temperatures.
Collapse
Affiliation(s)
- Andrej Junginger
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Pablo L Garcia-Muller
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Avda. Complutense 40, Madrid, Spain
| | - F Borondo
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - R M Benito
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid and Departamento de Física y Mecánica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
7
|
Craven GT, Popov AV, Hernandez R. Effective Surface Coverage of Coarse-Grained Soft Matter. J Phys Chem B 2014; 118:14092-102. [DOI: 10.1021/jp505207h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Galen T. Craven
- Center for Computational
Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Alexander V. Popov
- Center for Computational
Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Rigoberto Hernandez
- Center for Computational
Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|