1
|
Sunaga A. Strong parity-violation effects induced by large-amplitude motions: A quantum-dynamics study of substituted chiral methanols. J Chem Phys 2025; 162:064302. [PMID: 39927539 DOI: 10.1063/5.0249801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
An enhanced mechanism is proposed for the large-amplitude-motion-induced parity-violating frequency by integrating the exact quantum dynamics method with the relativistic electronic structure theory. The torsional wavefunctions and parity-violating (PV) frequency shifts are obtained by using the exact quantum dynamics method. The potential energy curve and PV energy along the torsional coordinates are calculated using the extended atomic mean-field two-component Hamiltonian. The predicted PV frequency shift for the torsional transition of CFClBrOH is ∼100 times larger than that of the conventional C-F stretching mode of CHFClBr. The maximum PV frequency shift (3.2 Hz) is obtained in the CHBrIOH molecule.
Collapse
Affiliation(s)
- Ayaki Sunaga
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Arrowsmith-Kron G, Athanasakis-Kaklamanakis M, Au M, Ballof J, Berger R, Borschevsky A, Breier AA, Buchinger F, Budker D, Caldwell L, Charles C, Dattani N, de Groote RP, DeMille D, Dickel T, Dobaczewski J, Düllmann CE, Eliav E, Engel J, Fan M, Flambaum V, Flanagan KT, Gaiser AN, Garcia Ruiz RF, Gaul K, Giesen TF, Ginges JSM, Gottberg A, Gwinner G, Heinke R, Hoekstra S, Holt JD, Hutzler NR, Jayich A, Karthein J, Leach KG, Madison KW, Malbrunot-Ettenauer S, Miyagi T, Moore ID, Moroch S, Navratil P, Nazarewicz W, Neyens G, Norrgard EB, Nusgart N, Pašteka LF, N Petrov A, Plaß WR, Ready RA, Pascal Reiter M, Reponen M, Rothe S, Safronova MS, Scheidenerger C, Shindler A, Singh JT, Skripnikov LV, Titov AV, Udrescu SM, Wilkins SG, Yang X. Opportunities for fundamental physics research with radioactive molecules. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084301. [PMID: 38215499 DOI: 10.1088/1361-6633/ad1e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
Collapse
Affiliation(s)
- Gordon Arrowsmith-Kron
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Michail Athanasakis-Kaklamanakis
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Mia Au
- CERN, Geneva, Switzerland
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Jochen Ballof
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
- Accelerator Systems Department, CERN, 1211 Geneva 23, Switzerland
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - Alexander A Breier
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | | | - Dmitry Budker
- Helmholtz-Institut, GSI Helmholtzzentrum fur Schwerionenforschung and Johannes Gutenberg University, Mainz 55128, Germany
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, United States of America
| | - Luke Caldwell
- JILA, NIST and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
| | - Christopher Charles
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- University of Western Ontario, 1151 Richmond St. N., London, Ontario N6A 5B7, Canada
| | - Nike Dattani
- HPQC Labs, Waterloo, Ontario, Canada
- HPQC College, Waterloo, Ontario, Canada
| | - Ruben P de Groote
- Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - David DeMille
- University of Chicago, Chicago, IL, United States of America
- Argonne National Laboratory, Lemont, IL, United States of America
| | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Jacek Dobaczewski
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
| | - Christoph E Düllmann
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Jonathan Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, United States of America
| | - Mingyu Fan
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | | | - Kieran T Flanagan
- Photon Science Institute, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alyssa N Gaiser
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Ronald F Garcia Ruiz
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Thomas F Giesen
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Jacinda S M Ginges
- School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| | | | - Gerald Gwinner
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 3M9, Canada
| | | | - Steven Hoekstra
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
- Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands
| | - Jason D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Nicholas R Hutzler
- California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Andrew Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Jonas Karthein
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Kyle G Leach
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
- Colorado School of Mines, Golden, CO 80401, United States of America
| | - Kirk W Madison
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada
| | - Stephan Malbrunot-Ettenauer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, Canada
| | | | - Iain D Moore
- Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Scott Moroch
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Petr Navratil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Witold Nazarewicz
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, United States of America
| | - Gerda Neyens
- KU Leuven, Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Eric B Norrgard
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nicholas Nusgart
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Alexander N Petrov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Roy A Ready
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Moritz Pascal Reiter
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD Edinburgh, United Kingdom
| | - Mikael Reponen
- Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | | | - Marianna S Safronova
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States of America
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20742, United States of America
| | - Christoph Scheidenerger
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Campus Gießen, Gießen, Germany
| | - Andrea Shindler
- Facility for Rare Isotope Beams & Physics Department, Michigan State University, East Lansing, MI 48824, United States of America
| | - Jaideep T Singh
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, United States of America
| | - Leonid V Skripnikov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Anatoly V Titov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Silviu-Marian Udrescu
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Shane G Wilkins
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Xiaofei Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Aucar JJ, Melo JI, Maldonado AF. Electric Field Gradient in Chiral and Tetrahedral Molecules within High-Order LRESC Formalism. J Phys Chem A 2024; 128:5089-5099. [PMID: 38725128 DOI: 10.1021/acs.jpca.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In this work, we present the electric field gradient (EFG) given by the linear response elimination of the small component (LRESC) scheme up to the 1/c4 order (c is the speed of light in vacuum) in CHFClX (X = Br, I, At) chiral molecules, together with CHF2Br and CH2FX (X = Br, I, At) tetrahedral systems. The former could be good candidates for further parity violation studies, especially when heavy atoms are surrounding. In this context, the LRESC scheme demonstrates effective applicability to large tetrahedral and chiral molecules that incorporate heavy elements, with relativistic effects playing a crucial role. The LRESC results of EFG exhibit an excellent agreement with those calculated at the four-component level, giving differences of only hundredths order in a.u. (atomic units) for the bromine nucleus and less than 0.1 a.u. for the iodine nucleus. Regarding the other nuclei, for the chiral molecules, there is a heavy atom effect on the light atom (HALA) for chlorine and fluorine atoms as the substituent halogen atom becomes heavier. Furthermore, the electronic part of the EFG for the central carbon and the fluorine nuclei presents an important dependence with the environment in the molecules under study. With accurate calculations of the EFG and tabulated nuclear quadrupole moment, the nuclear quadrupole coupling constant is obtained within the LRESC scheme, including for the first time correlation effects on the spin-dependent corrections with this methodology, providing results close to the experimental ones for Cl, Br, and I atoms. At the Hartree-Fock level, the differences are around 6% for Br and I nuclei, and at the density functional theory level with the LDA and PBE0 functionals, the differences are no more than 2%.
Collapse
Affiliation(s)
- Juan J Aucar
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad 5460, W3404AAS Corrientes, Argentina
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad 5460, W3404AAS Corrientes, Argentina
| | - Juan I Melo
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), C1428EGA Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, C1428EGA Buenos Aires, Argentina
| | - Alejandro F Maldonado
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad 5460, W3404AAS Corrientes, Argentina
| |
Collapse
|
4
|
Martínez-Gil D, Bargueño P, Miret-Artés S. The Interplay between Tunneling and Parity Violation in Chiral Molecules. ENTROPY (BASEL, SWITZERLAND) 2024; 26:456. [PMID: 38920465 PMCID: PMC11202422 DOI: 10.3390/e26060456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
In this review, the concepts of quantum tunneling and parity violation are introduced in the context of chiral molecules. A particle moving in a double well potential provides a good model to study the behavior of chiral molecules, where the left well and right well represent the L and R enantiomers, respectively. If the model considers the quantum behavior of matter, the concept of quantum tunneling emerges, giving place to stereomutation dynamics between left- and right-handed chiral molecules. Parity-violating interactions, like the electroweak one, can be also considered, making possible the existence of an energy difference between the L and R enantiomers, the so-called parity-violating energy difference (PVED). Here we provide a brief account of some theoretical methods usually employed to calculate this PVED, also commenting on relevant experiments devoted to experimentally detect the aforementioned PVED in chiral molecules. Finally, we comment on some ways of solving the so-called Hund's paradox, with emphasis on mean-field theory and decoherence.
Collapse
Affiliation(s)
- Daniel Martínez-Gil
- Fundación Humanismo y Ciencia, Guzmán el Bueno, 66, 28015 Madrid, Spain;
- Departamento de Física Aplicada, Campus de San Vicente del Raspeig, Universidad de Alicante, 03690 Alicante, Spain;
| | - Pedro Bargueño
- Departamento de Física Aplicada, Campus de San Vicente del Raspeig, Universidad de Alicante, 03690 Alicante, Spain;
| | - Salvador Miret-Artés
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
5
|
Aucar JJ, Stroppa A, Aucar GA. A Relationship between the Molecular Parity-Violation Energy and the Electronic Chirality Measure. J Phys Chem Lett 2024; 15:234-240. [PMID: 38158620 DOI: 10.1021/acs.jpclett.3c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.
Collapse
Affiliation(s)
- Juan J Aucar
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad, W3404AAS 5460, Corrientes, Argentina
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad, W3404AAS 5460, Corrientes, Argentina
| | - Alessandro Stroppa
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche 67100, Coppito (AQ), Via Vetoio, Italy
| | - Gustavo A Aucar
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad, W3404AAS 5460, Corrientes, Argentina
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad, W3404AAS 5460, Corrientes, Argentina
| |
Collapse
|
6
|
Glowacki-Pallach B, Lutter M, Schollmeyer D, Hiller W, Jouikov V, Jurkschat K. Extending Chirality in Group XIV Metallatranes. Inorg Chem 2023; 62:7662-7680. [PMID: 37156016 DOI: 10.1021/acs.inorgchem.2c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The syntheses of the racemic amino alcohol rac-N(CH2CMe2OH)(CMe2CH2OH)(CH2CHMeOH) (L22'1*H3, 2) and its representative N(CH2CMe2OH)(CMe2CH2OH)(CH2C(R)HMeOH) (L22'1RH3, 3) with the stereogenic carbon center being R-configured are reported. Also reported are the stannatranes L22'1*SnOt-Bu (4) L22'1RSnOt-Bu (6) and germatranes L22'1*GeOEt (5) and L22'1RGeOEt (7) as well as the trinuclear tin oxocluster [(μ3-O)(μ3-O-t-Bu){SnL22'1R}3] (8). NMR and IR spectroscopy, electrospray ionization mass spectrometry (ESI MS), and single crystal X-ray diffraction analysis characterize these compounds. Computational studies accompany the experimental work and help understand the diastereoselectivity observed in the course of the metallatrane syntheses.
Collapse
Affiliation(s)
- Britta Glowacki-Pallach
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Michael Lutter
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Dieter Schollmeyer
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Wolf Hiller
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
7
|
Fiechter M, Haase PAB, Saleh N, Soulard P, Tremblay B, Havenith RWA, Timmermans RGE, Schwerdtfeger P, Crassous J, Darquié B, Pašteka LF, Borschevsky A. Toward Detection of the Molecular Parity Violation in Chiral Ru(acac) 3 and Os(acac) 3. J Phys Chem Lett 2022; 13:10011-10017. [PMID: 36264147 PMCID: PMC9620138 DOI: 10.1021/acs.jpclett.2c02434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/11/2022] [Indexed: 06/03/2023]
Abstract
We present a theory-experiment investigation of the helically chiral compounds Ru(acac)3 and Os(acac)3 as candidates for next-generation experiments for detection of molecular parity violation (PV) in vibrational spectra. We used relativistic density functional theory calculations to identify optimal vibrational modes with expected PV effects exceeding by up to 2 orders of magnitude the projected instrumental sensitivity of the ultrahigh resolution experiment under construction at the Laboratoire de Physique des Lasers in Paris. Preliminary measurements of the vibrational spectrum of Ru(acac)3 carried out as the first steps toward the planned experiment are presented.
Collapse
Affiliation(s)
- Marit
R. Fiechter
- Van
Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department
of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Pi A. B. Haase
- Van
Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Nidal Saleh
- Department
of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
- Université
de Rennes, CNRS, ISCR-UMR
6226, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Pascale Soulard
- Sorbonne
Université, CNRS, UMR 8233,
MONARIS, Case courrier
49, 4 place Jussieu, F-75005 Paris, France
| | - Benoît Tremblay
- Sorbonne
Université, CNRS, UMR 8233,
MONARIS, Case courrier
49, 4 place Jussieu, F-75005 Paris, France
| | - Remco W. A. Havenith
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Ghent
Quantum
Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan
281 (S3), B-9000 Ghent, Belgium
| | - Rob G. E. Timmermans
- Van
Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Peter Schwerdtfeger
- Centre
for Theoretical Chemistry and Physics, The New Zealand Institute for
Advanced Study, Massey University, 0745 Auckland, New Zealand
| | - Jeanne Crassous
- Université
de Rennes, CNRS, ISCR-UMR
6226, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Benoît Darquié
- Laboratoire de Physique des Lasers, Université
Sorbonne Paris Nord, CNRS, 93430 Villetaneuse, France
| | - Lukáš F. Pašteka
- Van
Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department of Physical and Theoretical
Chemistry, Faculty of Natural
Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Anastasia Borschevsky
- Van
Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
8
|
Sunaga A, Saue T. Towards highly accurate calculations of parity violation in chiral molecules: relativistic coupled-cluster theory including QED-effects. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1974592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ayaki Sunaga
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS–Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
9
|
Sahu N, Richardson JO, Berger R. Instanton calculations of tunneling splittings in chiral molecules. J Comput Chem 2021; 42:210-221. [PMID: 33259074 DOI: 10.1002/jcc.26447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
We report the ground state tunneling splittings (ΔE± ) of a number of axially chiral molecules using the ring-polymer instanton (RPI) method (J. Chem. Phys., 2011, 134, 054109). The list includes isotopomers of hydrogen dichalcogenides H2 X2 (X = O, S, Se, Te, and Po), hydrogen thioperoxide HSOH and dichlorodisulfane S2 Cl2 . Ab initio electronic-structure calculations have been performed on the level of second-order Møller-Plesset perturbation (MP2) theory either with split-valance basis sets or augmented correlation-consistent basis sets on H, O, S, and Cl atoms. Energy-consistent pseudopotential and corresponding triple zeta basis sets of the Stuttgart group are used on Se, Te, and Po atoms. The results are further improved using single point calculations performed at the coupled cluster level with iterative singles and doubles and perturbative triples amplitudes. When available for comparison, our computed values of ΔE± are found to lie within the same order of magnitude as values reported in the literature, although RPI also provides predictions for H2 Po2 and S2 Cl2 , which have not previously been directly calculated. Since RPI is a single-shot method which does not require detailed prior knowledge of the optimal tunneling path, it offers an effective way for estimating the tunneling dynamics of more complex chiral molecules, and especially those with small tunneling splittings.
Collapse
Affiliation(s)
- Nityananda Sahu
- Fachbereich Chemie, Theoretische Chemie, Philipps Universität Marburg, Marburg, Germany
| | | | - Robert Berger
- Fachbereich Chemie, Theoretische Chemie, Philipps Universität Marburg, Marburg, Germany
| |
Collapse
|
10
|
Blanchard JW, Budker D, Trabesinger A. Lower than low: Perspectives on zero- to ultralow-field nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106886. [PMID: 33518173 DOI: 10.1016/j.jmr.2020.106886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The less-traveled low road in nuclear magnetic resonance is discussed, honoring the contributions of Prof. Bernhard Blümich, aspiring towards reaching 'a new low.' A history of the subject and its current status are briefly reviewed, followed by an effort to prophesy possible directions for future developments.
Collapse
Affiliation(s)
- John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany.
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany; Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany; Department of Physics, University of California, Berkeley, CA 94720-7300, USA
| | | |
Collapse
|
11
|
Gaul K, Kozlov MG, Isaev TA, Berger R. Chiral Molecules as Sensitive Probes for Direct Detection of P-Odd Cosmic Fields. PHYSICAL REVIEW LETTERS 2020; 125:123004. [PMID: 33016729 DOI: 10.1103/physrevlett.125.123004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Potential advantages of chiral molecules for a sensitive search for parity violating cosmic fields are highlighted. Such fields are invoked in different models for cold dark matter or in the Lorentz-invariance violating standard model extensions and thus are signatures of physics beyond the standard model. The sensitivity of a 20-year-old experiment with the molecule CHBrClF to pseudovector cosmic fields as characterized by the parameter |b_{0}^{e}| is estimated to be O(10^{-12} GeV) employing ab initio calculations. This allows us to project the sensitivity of future experiments with favorable choices of chiral heavy-elemental molecular probes to be O(10^{-17} GeV), which will be an improvement of the present best limits by at least two orders of magnitude.
Collapse
Affiliation(s)
- Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, Marburg 35032, Germany
| | - Mikhail G Kozlov
- Petersburg Nuclear Physics Institute of NRC "Kurchatov Institute", Gatchina 188300, Russia
- St. Petersburg Electrotechnical University "LETI", Professor Popov Street 5, St. Petersburg 197376, Russia
| | - Timur A Isaev
- Petersburg Nuclear Physics Institute of NRC "Kurchatov Institute", Gatchina 188300, Russia
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, Marburg 35032, Germany
| |
Collapse
|
12
|
Gaul K, Berger R. Quasi-relativistic study of nuclear electric quadrupole coupling constants in chiral molecules containing heavy elements. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
13
|
Parity Violation Energy of Biomolecules - V: Protein Metal Centers. ORIGINS LIFE EVOL B 2020; 50:145-155. [PMID: 32564245 DOI: 10.1007/s11084-020-09598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The parity-violation difference between mirror images of chiral metal centers found in naturally occurring proteins and enzymes is computed at the Dirac-Hartree-Fock level, for both equilibrium and transition state configurations. The systems, selected on the likelihood of yielding high parity violation energies based on atomic mass and coordination geometry, are extracted from: type I Blue Copper Protein active site, Zn and Cd Carbon Anhydrase, Ni Acetyl-Coenzyme-A Synthase, and Mo based CO-Dehydrogenase. Our values provide an approximate upper limit to possible parity-violation effects in biological systems based on static effects.
Collapse
|
14
|
Garcia Ruiz RF, Berger R, Billowes J, Binnersley CL, Bissell ML, Breier AA, Brinson AJ, Chrysalidis K, Cocolios TE, Cooper BS, Flanagan KT, Giesen TF, de Groote RP, Franchoo S, Gustafsson FP, Isaev TA, Koszorús Á, Neyens G, Perrett HA, Ricketts CM, Rothe S, Schweikhard L, Vernon AR, Wendt KDA, Wienholtz F, Wilkins SG, Yang XF. Spectroscopy of short-lived radioactive molecules. Nature 2020; 581:396-400. [PMID: 32461650 PMCID: PMC7334132 DOI: 10.1038/s41586-020-2299-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
Abstract
Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1-4. Radioactive molecules-in which one or more of the atoms possesses a radioactive nucleus-can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7-9 in molecules containing octupole-deformed radium isotopes10,11. However, the study of RaF has been impeded by the lack of stable isotopes of radium. Here we present an experimental approach to studying short-lived radioactive molecules, which allows us to measure molecules with lifetimes of just tens of milliseconds. Energetically low-lying electronic states were measured for different isotopically pure RaF molecules using collinear resonance ionisation at the ISOLDE ion-beam facility at CERN. Our results provide evidence of the existence of a suitable laser-cooling scheme for these molecules and represent a key step towards high-precision studies in these systems. Our findings will enable further studies of short-lived radioactive molecules for fundamental physics research.
Collapse
Affiliation(s)
- R F Garcia Ruiz
- CERN, Geneva, Switzerland.
- Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - R Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
| | - J Billowes
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - C L Binnersley
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - M L Bissell
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - A A Breier
- Laboratory for Astrophysics, Institute of Physics, University of Kassel, Kassel, Germany
| | - A J Brinson
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - T E Cocolios
- KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
| | - B S Cooper
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - K T Flanagan
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- Photon Science Institute, The University of Manchester, Manchester, UK
| | - T F Giesen
- Laboratory for Astrophysics, Institute of Physics, University of Kassel, Kassel, Germany
| | - R P de Groote
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - S Franchoo
- Institut de Physique Nucleaire d'Orsay, Orsay, France
| | - F P Gustafsson
- KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
| | - T A Isaev
- NRC 'Kurchatov Institute'-PNPI, Gatchina, Russia
| | - Á Koszorús
- KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
| | - G Neyens
- CERN, Geneva, Switzerland
- KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
| | - H A Perrett
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - C M Ricketts
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | | | - L Schweikhard
- Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - A R Vernon
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - K D A Wendt
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - F Wienholtz
- CERN, Geneva, Switzerland
- Institut für Physik, Universität Greifswald, Greifswald, Germany
| | | | - X F Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
| |
Collapse
|
15
|
Quack M, Seyfang G, Wichmann G. Fundamental and approximate symmetries, parity violation and tunneling in chiral and achiral molecules. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|