1
|
Guo W, Kong WY, Tantillo DJ. Revisiting a classic carbocation - DFT, coupled-cluster, and ab initio molecular dynamics computations on barbaralyl cation formation and rearrangements. Chem Sci 2024; 15:d4sc04829f. [PMID: 39268206 PMCID: PMC11385376 DOI: 10.1039/d4sc04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Density functional theory computations were used to model the formation and rearrangement of the barbaralyl cation (C9H+ 9). Two highly delocalized minima were located for C9H+ 9, one of C s symmetry and the other of D 3h symmetry, with the former having lower energy. Quantum chemistry-based NMR predictions affirm that the lower energy structure is the best match with experimental spectra. Partial scrambling was found to proceed through a C 2 symmetric transition structure associated with a barrier of only 2.3 kcal mol-1. The full scrambling was found to involve a C 2v symmetric transition structure associated with a 5.0 kcal mol-1 barrier. Ab initio molecular dynamics simulations initiated from the D 3h C9H+ 9 structure revealed its connection to six minima, due to the six-fold symmetry of the potential energy surface. The effects of tunneling and boron substitution on this complex reaction network were also examined.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, Univeristy of California Davis USA
| | - Wang-Yeuk Kong
- Department of Chemistry, Univeristy of California Davis USA
| | | |
Collapse
|
2
|
Wang Z, Cao Z, Hao A, Xing P. Pnictogen bonding in imide derivatives for chiral folding and self-assembly. Chem Sci 2024; 15:6924-6933. [PMID: 38725497 PMCID: PMC11077576 DOI: 10.1039/d4sc00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies. Though the presence of PnB has limited effects on spectroscopic properties in the solution phase, conformation locking effects are sufficiently expressed in the chiral folding and self-assembly behavior. PnB anchors the chiral conformation to control the emergence and inversion of chiroptical signals, while intramolecular PnB induces the formation of supramolecular tilt chirality. It also enables the chiral folding of imide-containing amino acid or peptide derivatives, which induces the formation of unique secondary structural sequences such as β-sheets. Finally, the effects of PnB in directing folded helical structures were revealed. Examples of cysteine and cystine derivatives containing multiple N⋯O and N⋯S PnBs constitute an α-helix like secondary structure with characteristic circular dichroism. This work discloses the comprehensive existence of imide-involved PnB, illustrates its important role in folding and self-assembly, and sheds light on the rational fabrication of conformation-locked compounds and polymers with controllable chiroptical activities.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
3
|
Kim Y, Jung H, Kumar S, Paton RS, Kim S. Designing solvent systems using self-evolving solubility databases and graph neural networks. Chem Sci 2024; 15:923-939. [PMID: 38239675 PMCID: PMC10793204 DOI: 10.1039/d3sc03468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Designing solvent systems is key to achieving the facile synthesis and separation of desired products from chemical processes, so many machine learning models have been developed to predict solubilities. However, breakthroughs are needed to address deficiencies in the model's predictive accuracy and generalizability; this can be addressed by expanding and integrating experimental and computational solubility databases. To maximize predictive accuracy, these two databases should not be trained separately, and they should not be simply combined without reconciling the discrepancies from different magnitudes of errors and uncertainties. Here, we introduce self-evolving solubility databases and graph neural networks developed through semi-supervised self-training approaches. Solubilities from quantum-mechanical calculations are referred to during semi-supervised learning, but they are not directly added to the experimental database. Dataset augmentation is performed from 11 637 experimental solubilities to >900 000 data points in the integrated database, while correcting for the discrepancies between experiment and computation. Our model was successfully applied to study solvent selection in organic reactions and separation processes. The accuracy (mean absolute error around 0.2 kcal mol-1 for the test set) is quantitatively useful in exploring Linear Free Energy Relationships between reaction rates and solvation free energies for 11 organic reactions. Our model also accurately predicted the partition coefficients of lignin-derived monomers and drug-like molecules. While there is room for expanding solubility predictions to transition states, radicals, charged species, and organometallic complexes, this approach will be attractive to predictive chemistry areas where experimental, computational, and other heterogeneous data should be combined.
Collapse
Affiliation(s)
- Yeonjoon Kim
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
- Department of Chemistry, Pukyong National University Busan 48513 Republic of Korea
| | - Hojin Jung
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Sabari Kumar
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Seonah Kim
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
4
|
Zhong H, Wang X, Chen S, Wang Z, Wang H, Xu L, Hou T, Yao X, Li D, Pan P. Discovery of Novel Inhibitors of BRD4 for Treating Prostate Cancer: A Comprehensive Case Study for Considering Water Networks in Virtual Screening and Drug Design. J Med Chem 2024; 67:138-151. [PMID: 38153295 DOI: 10.1021/acs.jmedchem.3c00996] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Androgen receptor (AR) is the primary target for treating prostate cancer (PCa), which inevitably progresses due to drug-resistant mutations. Bromodomain-containing protein 4 (BRD4) has been a new potential drug target for PCa treatment. Herein, we report the rational design and discovery of novel BRD4 inhibitors through computer-aided drug design (CADD), and a hit compound SQ-1 (IC50 = 676 nM) was identified by structure-based virtual screening (SBVS) with the conserved water network. To optimize the structure of SQ-1, the free energy landscape was constructed, and the binding mechanism was explored by characterizing the water profile and the dissociation mechanism. Finally, the compound SQ-17 with improved inhibitory activity (IC50 < 100 nM) was discovered, which showed potent antiproliferative activity against LNCaP. These data highlighted a successful attempt to identify and optimize a small molecule by comprehensive CADD application and provided essential clues for developing novel therapeutics for PCa treatment.
Collapse
Affiliation(s)
- Haiyang Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyue Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shicheng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huating Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Kaynak BT, Dahmani ZL, Doruker P, Banerjee A, Yang SH, Gordon R, Itzhaki LS, Bahar I. Cooperative mechanics of PR65 scaffold underlies the allosteric regulation of the phosphatase PP2A. Structure 2023; 31:607-618.e3. [PMID: 36948205 PMCID: PMC10164121 DOI: 10.1016/j.str.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
PR65, a horseshoe-shaped scaffold composed of 15 HEAT (observed in Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) repeats, forms, together with catalytic and regulatory subunits, the heterotrimeric protein phosphatase PP2A. We examined the role of PR65 in enabling PP2A enzymatic activity with computations at various levels of complexity, including hybrid approaches that combine full-atomic and elastic network models. Our study points to the high flexibility of this scaffold allowing for end-to-end distance fluctuations of 40-50 Å between compact and extended conformations. Notably, the intrinsic dynamics of PR65 facilitates complexation with the catalytic subunit and is retained in the PP2A complex enabling PR65 to engage the two domains of the catalytic subunit and provide the mechanical framework for enzymatic activity, with support from the regulatory subunit. In particular, the intra-repeat coils at the C-terminal arm play an important role in allosterically mediating the collective dynamics of PP2A, pointing to target sites for modulating PR65 function.
Collapse
Affiliation(s)
- Burak T Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zakaria L Dahmani
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
6
|
Imamoto JM, Zauhar RJ, Bruist MF. Sarcin/Ricin Domain RNA Retains Its Structure Better Than A-RNA in Adaptively Biased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:10018-10033. [PMID: 36417896 DOI: 10.1021/acs.jpcb.2c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Less than one in thirty of the RNA sequences transcribed in humans are translated into protein. The noncoding RNA (ncRNA) functions in catalysis, structure, regulation, and more. However, for the most part, these functions are poorly characterized. RNA is modular and described by motifs that include helical A-RNA with canonical Watson-Crick base-pairing as well as structures with only noncanonical base pairs. Understanding the structure and dynamics of motifs will aid in deciphering functions of specific ncRNAs. We present computational studies on a standard sarcin/ricin domain (SRD), citrus bark cracking viroid SRD, as well as A-RNA. We have applied enhanced molecular dynamics techniques that construct an inverse free-energy surface (iFES) determined by collective variables that monitor base-pairing and backbone conformation. Each SRD RNA is flanked on each side by A-RNA, allowing comparison of the behavior of these motifs in the same molecule. The RNA iFESs have single peaks, indicating that the combined motifs should denature as a single cohesive unit, rather than by regional melting. Local root-mean-square deviation (RMSD) analysis and communication propensity (CProp, variance in distances between residue pairs) reveal distinct motif properties. Our analysis indicates that the standard SRD is more stable than the viroid SRD, which is more stable than A-RNA. Base pairs at SRD to A-RNA transitions have limited flexibility. Application of CProp reveals extraordinary stiffness of the SRD, allowing residues on opposite sides of the motif to sense each other's motions.
Collapse
Affiliation(s)
- Jason M Imamoto
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Randy J Zauhar
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Michael F Bruist
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| |
Collapse
|
7
|
Habibi M, Plotkin SS, Rottler J. Soft Vibrational Modes Predict Breaking Events during Force-Induced Protein Unfolding. Biophys J 2018; 114:562-569. [PMID: 29414701 PMCID: PMC5985024 DOI: 10.1016/j.bpj.2017.11.3781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
We investigate the correlation between soft vibrational modes and unfolding events in simulated force spectroscopy of proteins. Unfolding trajectories are obtained from molecular dynamics simulations of a Gō model of a monomer of a mutant of superoxide dismutase 1 protein containing all heavy atoms in the protein, and a normal mode analysis is performed based on the anisotropic network model. We show that a softness map constructed from the superposition of the amplitudes of localized soft modes correlates with unfolding events at different stages of the unfolding process. Soft residues are up to eight times more likely to undergo disruption of native structure than the average amino acid. The memory of the softness map is retained for extensions of up to several nanometers, but decorrelates more rapidly during force drops.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; Quantum Matter Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Eyal E, Lum G, Bahar I. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 2015; 31:1487-9. [PMID: 25568280 PMCID: PMC4410662 DOI: 10.1093/bioinformatics/btu847] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/11/2014] [Accepted: 12/21/2014] [Indexed: 11/12/2022] Open
Abstract
SUMMARY The anisotropic network model (ANM) is one of the simplest yet powerful tools for exploring protein dynamics. Its main utility is to predict and visualize the collective motions of large complexes and assemblies near their equilibrium structures. The ANM server, introduced by us in 2006 helped making this tool more accessible to non-sophisticated users. We now provide a new version (ANM 2.0), which allows inclusion of nucleic acids and ligands in the network model and thus enables the investigation of the collective motions of protein-DNA/RNA and -ligand systems. The new version offers the flexibility of defining the system nodes and the interaction types and cutoffs. It also includes extensive improvements in hardware, software and graphical interfaces. AVAILABILITY AND IMPLEMENTATION ANM 2.0 is available at http://anm.csb.pitt.edu CONTACT eran.eyal@sheba.health.gov.il, eyal.eran@gmail.com.
Collapse
Affiliation(s)
- Eran Eyal
- Cancer Research Institute, Sheba Medical Center, 2 Sheba Rd, Ramat Gan 52621, Israel and Department of Computational and System Biology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Gengkon Lum
- Cancer Research Institute, Sheba Medical Center, 2 Sheba Rd, Ramat Gan 52621, Israel and Department of Computational and System Biology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Ivet Bahar
- Cancer Research Institute, Sheba Medical Center, 2 Sheba Rd, Ramat Gan 52621, Israel and Department of Computational and System Biology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Li XB, Burkowski F. Generating conformational transitions using the euclidean distance matrix. IEEE Trans Nanobioscience 2015; 14:203-9. [PMID: 25608309 DOI: 10.1109/tnb.2014.2387156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Elastic network interpolation (ENI) is an efficient method for generating intermediate conformations between two end protein conformations. Its current formulation uses interatomic distance. We show how this can be generalized to interatomic distances-squared. This generalization is part of an effort to study protein dynamics on the set of positive semidefinite (PSD) matrices, which has a rich mathematical structure. We use lattice structures to test this interpolation scheme, and discuss some limitations observed. We conclude with some suggestions for future research.
Collapse
|
10
|
Gabelli SB, Echeverria I, Alexander M, Duong-Ly KC, Chaves-Moreira D, Brower ET, Vogelstein B, Amzel LM. Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects. Biophys Rev 2014; 6:89-95. [PMID: 25309634 PMCID: PMC4192660 DOI: 10.1007/s12551-013-0131-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
PI3Kα, a heterodimeric lipid kinase, catalyzes the conversion of phosphoinositide-4,5-bisphosphate (PIP2) to phosphoinositide-3,4,5-trisphosphate (PIP3), a lipid that recruits to the plasma membrane proteins that regulate signaling cascades that control key cellular processes such as cell proliferation, carbohydrate metabolism, cell motility, and apoptosis. PI3Kα is composed of two subunits, p110α and p85, that are activated by binding to phosphorylated receptor tyrosine kinases (RTKs) or their substrates. The gene coding for p110α, PIK3CA, has been found to be mutated in a large number of tumors; these mutations result in increased PI3Kα kinase activity. The structure of the complex of p110α with a fragment of p85 containing the nSH2 and the iSH2 domains has provided valuable information about the mechanisms underlying the physiological activation of PI3Kα and its pathological activation by oncogenic mutations. This review discusses information derived from x-ray diffraction and theoretical calculations regarding the structural and dynamic effects of mutations in four highly mutated regions of PI3K p110α, as well as the proposed mechanisms by which these mutations increase kinase activity. During the physiological activation of PI3Kα, the phosphorylated tyrosine of RTKs binds to the nSH2 domain of p85, dislodging an inhibitory interaction between the p85 nSH2 and a loop of the helical domain of p110α. Several of the oncogenic mutations in p110α activate the enzyme by weakening this autoinhibitory interaction. These effects involve structural changes as well as changes in the dynamics of the enzyme. One of the most common p110α mutations, H1047R, activates PI3Kα by a different mechanism: it increases the interaction of the enzyme with the membrane, maximizing the access of the PI3Kα to its substrate PIP2, a membrane lipid.
Collapse
Affiliation(s)
- Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ignacia Echeverria
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Megan Alexander
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Krisna C. Duong-Ly
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Daniele Chaves-Moreira
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Evan T. Brower
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at the Hopkins-Kimmel Cancer Center, University School of Medicine, Baltimore, MD 21231 USA
| | - B. Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at the Hopkins-Kimmel Cancer Center, University School of Medicine, Baltimore, MD 21231 USA
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
11
|
de Mendonça MR, Rizzi LG, Contessoto V, Leite VBP, Alves NA. Inferring a weighted elastic network from partial unfolding with coarse-grained simulations. Proteins 2013; 82:119-29. [DOI: 10.1002/prot.24381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/29/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Matheus R. de Mendonça
- Departamento de Física, FFCLRP; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brazil
| | - Leandro G. Rizzi
- Departamento de Física, FFCLRP; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brazil
| | - Vinicius Contessoto
- Departamento de Física, IBILCE; Universidade Estadual Paulista; São José do Rio Preto 15054-000 SP Brazil
| | - Vitor B. P. Leite
- Departamento de Física, IBILCE; Universidade Estadual Paulista; São José do Rio Preto 15054-000 SP Brazil
| | - Nelson A. Alves
- Departamento de Física, FFCLRP; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brazil
| |
Collapse
|
12
|
Novikov GV, Sivozhelezov VS, Shaitan KV. Functionally relevant conformational dynamics of water-soluble proteins. Mol Biol 2013. [DOI: 10.1134/s0026893313010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Sfriso P, Emperador A, Orellana L, Hospital A, Gelpí JL, Orozco M. Finding Conformational Transition Pathways from Discrete Molecular Dynamics Simulations. J Chem Theory Comput 2012; 8:4707-18. [DOI: 10.1021/ct300494q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pedro Sfriso
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
| | - Agusti Emperador
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
| | - Laura Orellana
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
| | - Adam Hospital
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
- Structural Bioinformatics Node,
Instituto Nacional De Bioinformática, Institute of Research
in Biomedicine, Josep Samitier 1-5, Barcelona, 08028, Spain
| | - Josep Lluis Gelpí
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
- Computational Bioinformatics Node,
Instituto Nacional De Bioinformática, Barcelona Supercomputing
Center, Jordi Girona 29, Barcelona, 08034, Spain
- Departament de Bioquímica,
Facultat de Biologia, Universtitat de Barcelona, Avgda Diagonal 647,
Barcelona, 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
- Structural Bioinformatics Node,
Instituto Nacional De Bioinformática, Institute of Research
in Biomedicine, Josep Samitier 1-5, Barcelona, 08028, Spain
- Departament de Bioquímica,
Facultat de Biologia, Universtitat de Barcelona, Avgda Diagonal 647,
Barcelona, 08028, Spain
| |
Collapse
|