1
|
Giesbrecht B, Bullock T, Garrett J. Physically activated modes of attentional control. Trends Cogn Sci 2025; 29:295-307. [PMID: 39690081 DOI: 10.1016/j.tics.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
As we navigate through the day, our attentional control processes are constantly challenged by changing sensory information, goals, expectations, and motivations. At the same time, our bodies and brains are impacted by changes in global physiological state that can influence attentional processes. Based on converging lines of evidence from brain recordings in physically active humans and nonhumans, we propose a new framework incorporating at least two physically activated modes of attentional control in humans: altered gain control and differential neuromodulation of control networks. We discuss the implications of this framework for understanding a broader range of states and cognitive functions studied both in the laboratory and in the wild.
Collapse
Affiliation(s)
- Barry Giesbrecht
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| | - Tom Bullock
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Jordan Garrett
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Qian Q, Zhao J, Zhang H, Yang J, Wang A, Zhang M. Object-based inhibition of return in three-dimensional space: From simple drawings to real objects. J Vis 2023; 23:7. [PMID: 37971769 PMCID: PMC10664731 DOI: 10.1167/jov.23.13.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Cued to an object in space, inhibition of the attended location can spread to the entire object. Although object-based inhibition of return (IOR) studies in a two-dimensional plane have been documented, the IOR has not been explored when objects cross depth in three-dimensional (3D) space. In the present study, we used a virtual reality technique to adapt the double-rectangle paradigm to a 3D space, and manipulated the cue validity and target location to examine the difference in object-based IOR between far and near spaces under different object representations. The study showed that the object-based IOR of simple drawings existed only in near space, whereas object-based IOR of real objects existed only in far space at first, and as the object similarity decreases, it appeared in both far and near spaces.
Collapse
Affiliation(s)
- Qinyue Qian
- Department of Psychology, Soochow University, Suzhou, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Shaanxi Normal University, Xi'an, China
| | - Huan Zhang
- Department of Psychology, Soochow University, Suzhou, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Jiajia Yang
- Applied Brain Science Lab Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Aijun Wang
- Department of Psychology, Soochow University, Suzhou, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Ming Zhang
- Department of Psychology, Soochow University, Suzhou, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
3
|
Cervantes Constantino F, Sánchez-Costa T, Cipriani GA, Carboni A. Visuospatial attention revamps cortical processing of sound amid audiovisual uncertainty. Psychophysiology 2023; 60:e14329. [PMID: 37166096 DOI: 10.1111/psyp.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Selective attentional biases arising from one sensory modality manifest in others. The effects of visuospatial attention, important in visual object perception, are unclear in the auditory domain during audiovisual (AV) scene processing. We investigate temporal and spatial factors that underlie such transfer neurally. Auditory encoding of random tone pips in AV scenes was addressed via a temporal response function model (TRF) of participants' electroencephalogram (N = 30). The spatially uninformative pips were associated with spatially distributed visual contrast reversals ("flips"), through asynchronous probabilistic AV temporal onset distributions. Participants deployed visuospatial selection on these AV stimuli to perform a task. A late (~300 ms) cross-modal influence over the neural representation of pips was found in the original and a replication study (N = 21). Transfer depended on selected visual input being (i) presented during or shortly after a related sound, in relatively limited temporal distributions (<165 ms); (ii) positioned across limited (1:4) visual foreground to background ratios. Neural encoding of auditory input, as a function of visual input, was largest at visual foreground quadrant sectors and lowest at locations opposite to the target. The results indicate that ongoing neural representations of sounds incorporate visuospatial attributes for auditory stream segregation, as cross-modal transfer conveys information that specifies the identity of multisensory signals. A potential mechanism is by enhancing or recalibrating the tuning properties of the auditory populations that represent them as objects. The results account for the dynamic evolution under visual attention of multisensory integration, specifying critical latencies at which relevant cortical networks operate.
Collapse
Affiliation(s)
- Francisco Cervantes Constantino
- Centro de Investigación Básica en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- Instituto de Fundamentos y Métodos en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Thaiz Sánchez-Costa
- Centro de Investigación Básica en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
| | - Germán A Cipriani
- Centro de Investigación Básica en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
| | - Alejandra Carboni
- Centro de Investigación Básica en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- Instituto de Fundamentos y Métodos en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Narhi-Martinez W, Dube B, Golomb JD. Attention as a multi-level system of weights and balances. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1633. [PMID: 36317275 PMCID: PMC9840663 DOI: 10.1002/wcs.1633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022]
Abstract
This opinion piece is part of a collection on the topic: "What is attention?" Despite the word's place in the common vernacular, a satisfying definition for "attention" remains elusive. Part of the challenge is there exist many different types of attention, which may or may not share common mechanisms. Here we review this literature and offer an intuitive definition that draws from aspects of prior theories and models of attention but is broad enough to recognize the various types of attention and modalities it acts upon: attention as a multi-level system of weights and balances. While the specific mechanism(s) governing the weighting/balancing may vary across levels, the fundamental role of attention is to dynamically weigh and balance all signals-both externally-generated and internally-generated-such that the highest weighted signals are selected and enhanced. Top-down, bottom-up, and experience-driven factors dynamically impact this balancing, and competition occurs both within and across multiple levels of processing. This idea of a multi-level system of weights and balances is intended to incorporate both external and internal attention and capture their myriad of constantly interacting processes. We review key findings and open questions related to external attention guidance, internal attention and working memory, and broader attentional control (e.g., ongoing competition between external stimuli and internal thoughts) within the framework of this analogy. We also speculate about the implications of failures of attention in terms of weights and balances, ranging from momentary one-off errors to clinical disorders, as well as attentional development and degradation across the lifespan. This article is categorized under: Psychology > Attention Neuroscience > Cognition.
Collapse
Affiliation(s)
| | - Blaire Dube
- The Ohio State University, Department of Psychology
| | - Julie D. Golomb
- Correspondence concerning this article should be addressed to Julie Golomb, Department of Psychology, The Ohio State University, Columbus, OH, 43210.
| |
Collapse
|
5
|
Learned feature regularities enable suppression of spatially overlapping stimuli. Atten Percept Psychophys 2022; 85:769-784. [PMID: 36417129 PMCID: PMC10066085 DOI: 10.3758/s13414-022-02612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
AbstractContemporary theories of attentional control state that information can be prioritized based on selection history. Even though theories agree that selection history can impact representations of spatial location, which in turn helps guide attention, there remains disagreement on whether nonspatial features (e.g., color) are modulated in a similar way. While previous work has demonstrated color suppression using visual search tasks, it is possible that the location corresponding to the distractor was suppressed, consistent with a spatial mechanism of suppression. Here, we sought to rule out this possibility by testing whether similar suppression of a learned distractor color can occur for spatially overlapping visual stimuli. On a given trial, two spatially superimposed stimuli (line arrays) were tilted either left or right of vertical and presented in one of four distinct colors. Subjects performed a speeded report of the orientation of the “target” array with the most lines. Critically, the distractor array was regularly one color, and this high-probability color was never the color of the target array, which encouraged learned suppression. In two experiments, responses to the target array were fastest when the distractor array was in the high-probability color, suggesting participants suppressed the distractor color. Additionally, when regularities were removed, the high-probability distractor color continued to benefit speeded target identification for individual subjects (E1) but slowed target identification (E2) when presented in the target array. Together, these results indicate that learned suppression of feature-based regularities modulates target detection performance independent of spatial location and persists over time.
Collapse
|