1
|
Miramontes-Escobar HA, Hengl N, Dornier M, Montalvo-González E, Chacón-López MA, Achir N, Vaillant F, Ortiz-Basurto RI. Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice. MEMBRANES 2024; 14:192. [PMID: 39330533 PMCID: PMC11433797 DOI: 10.3390/membranes14090192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
To reduce membrane fouling during the processing of highly pulpy fruit juices into clarified beverages, a crossflow Sono-Microfiltration (SMF) system was employed, strategically equipped with an ultrasonic probe for the direct application of low-frequency ultrasound (LFUS) to the juice just before the entrance to the ceramic membrane. Operating conditions were standardized, and the application of LFUS pulses in both corrective and preventive modes was investigated. The effect of SMF on the physicochemical properties and the total soluble phenol (TSP) content of the clarified juice was also evaluated. The distance of ultrasonic energy irradiation guided the selection of the LFUS probe. Amplitude conditions and ultrasonic pulses were more effective in the preventive mode and did not cause membrane damage, reducing the operation time of jackfruit juice by up to 50% and increasing permeability by up to 81%. The SMF did not alter the physicochemical parameters of the clarified juice, and the measured LFUS energy ranges did not affect the TSP concentration during the process. This study is the first to apply LFUS directly to the feed stream in a pilot-scale crossflow microfiltration system to reduce the fouling of ceramic membranes and maintain bioactive compounds in jackfruit juice.
Collapse
Affiliation(s)
- Herenia Adilene Miramontes-Escobar
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Nicolas Hengl
- Laboratoire Rhéologie Et Procédés, Grenoble INP (Institute of Engineering Université Grenoble Alpes), Centre National de la Recherche Scientifique, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Manuel Dornier
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| | - Martina Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| | - Nawel Achir
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Fabrice Vaillant
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Qualisud, Agrosavia, Rionegro-Antioquia 054048, Colombia
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| |
Collapse
|
2
|
Krsmanovic M, Ghosh R, Dickerson AK. Fur flutter in fluid flow fends off foulers. J R Soc Interface 2023; 20:20230485. [PMID: 38053385 PMCID: PMC10698484 DOI: 10.1098/rsif.2023.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.
Collapse
Affiliation(s)
- Milos Krsmanovic
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Andrew K. Dickerson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|