1
|
Reshetnikov VV, Bondar NP. The Role of Stress-Induced Changes of Homer1 Expression in Stress Susceptibility. BIOCHEMISTRY (MOSCOW) 2021; 86:613-626. [PMID: 34225586 DOI: 10.1134/s0006297921060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Juruena MF, Jelen LA, Young AH, Cleare AJ. New Pharmacological Interventions in Bipolar Disorder. Curr Top Behav Neurosci 2021; 48:303-324. [PMID: 33547595 DOI: 10.1007/7854_2020_181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological bases of bipolar disorder include aspects related, among others, to neurohormonal pathways, neurotransmission, signal transduction, regulation of gene expression, oxidative stress, neuroplasticity, and changes in the immune system. There is still a gap in understanding its complex neurobiology and, consequently, developing new treatments. Multiple factors probably interact in this complex equation of pathophysiology of bipolar disorder, such as genetic, biochemical, psychosocial, and environmental stress events, correlating with the development and severity of the bipolar disorder. These mechanisms can interact to exacerbate inflammation, impair neurogenesis, and increase oxidative stress damage, cellular mitochondrial dysfunction, changes in neurotrophins and in epigenetic mechanisms, neuroendocrine dysfunction, activation of neuronal death pathways, and dysfunction in neurotransmission systems. In this review, we explore the up-to-date knowledge of the neurobiological underpinnings of bipolar disorders. The difficulty in developing new drugs for bipolar disorder is very much associated with the lack of knowledge about the precise pathophysiology of this disorder. Pharmacological treatment for bipolar patients is vital; to progress to effective medications, it is essential to understand the neurobiology in bipolar patients better and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Luke A Jelen
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
3
|
Venuto S, Castellana S, Monti M, Appolloni I, Fusilli C, Fusco C, Pucci P, Malatesta P, Mazza T, Merla G, Micale L. TRIM8-driven transcriptomic profile of neural stem cells identified glioma-related nodal genes and pathways. Biochim Biophys Acta Gen Subj 2018; 1863:491-501. [PMID: 30528352 DOI: 10.1016/j.bbagen.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND We recently reported TRIM8, encoding an E3 ubiquitin ligase, as a gene aberrantly expressed in glioblastoma whose expression suppresses cell growth and induces a significant reduction of clonogenic potential in glioblastoma cell lines. METHODS we provided novel insights on TRIM8 functions by profiling the transcriptome of TRIM8-expressing primary mouse embryonal neural stem cells by RNA-sequencing and bioinformatic analysis. Functional analysis including luciferase assay, western blot, PCR arrays, Real time quantitative PCR were performed to validate the transcriptomic data. RESULTS Our study identified enriched pathways related to the neurotransmission and to the central nervous system (CNS) functions, including axonal guidance, GABA receptor, Ephrin B, synaptic long-term potentiation/depression, and glutamate receptor signalling pathways. Finally, we provided additional evidence about the existence of a functional interactive crosstalk between TRIM8 and STAT3. CONCLUSIONS Our results substantiate the role of TRIM8 in the brain functions through the dysregulation of genes involved in different CNS-related pathways, including JAK-STAT. GENERAL SIGNIFICANCE This study provides novel insights on the physiological TRIM8 function by profiling for the first time the primary Neural Stem Cell over-expressing TRIM8 by using RNA-Sequencing methodology.
Collapse
Affiliation(s)
- Santina Venuto
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy; Experimental and Regenerative Medicine, University of Foggia, Via A. Gramsci, 89/91, 71122, Foggia, Italy.
| | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Maria Monti
- CEINGE Advanced Biotechnology, Department of Chemical Sciences, Federico II University, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.
| | - Irene Appolloni
- U.O. Medicina Rigenerativa Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Caterina Fusilli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Piero Pucci
- CEINGE Advanced Biotechnology, Department of Chemical Sciences, Federico II University, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.
| | - Paolo Malatesta
- U.O. Medicina Rigenerativa Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine (DiMES), University of Genova, Via Leon Battista Alberti, 2, 16132 Genova, Italy.
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, Foggia, Italy.
| |
Collapse
|
4
|
Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 2016; 82:1280-1290. [PMID: 26613210 PMCID: PMC5061805 DOI: 10.1111/bcp.12845] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the revolution in recent decades regarding monoamine involvement in the management of major depressive disorder (MDD), the biological mechanisms underlying this psychiatric disorder are still poorly understood. Currently available treatments require long time courses to establish antidepressant response and a significant percentage of people are refractory to single drug or combination drug treatment. These issues, and recent findings demonstrating the involvement of synaptic plasticity in the pathophysiological mechanisms of MDD, are encouraging researchers to explore the molecular mechanisms underlying psychiatric disease in more depth. The discovery of the rapid antidepressant effect exerted by glutamatergic and cholinergic agents highlights the mammalian target of rapamycin (mTOR) pathway as a critical pathway that contributes to the efficacy of these pharmacological agents in clinical and pre-clinical research. The mTOR pathway is a downstream intracellular signal that transmits information after the direct activation of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and neurotrophic factor receptors. Activation of these receptors is hypothesized to be one of the major axes involved in the synthesis of synaptogenic proteins underlying synaptic plasticity and critical to both the rapid and delayed effects exerted by classic antidepressants. This review focuses on the involvement of mTOR in the pathophysiology of depression and on molecular mechanisms involved in the activity of emerging and classic antidepressant agents.
Collapse
Affiliation(s)
- Zuleide M Ignácio
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Physiology, Pharmacology, Pathology and Psychopathology, Campus Chapeco, Federal University of South Frontier, Chapeco, Santa Catarina, Brazil
| | - Gislaine Z Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
| | - Camila O Arent
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Helena M Abelaira
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Meagan R Pitcher
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Liu F, Patterson TA, Sadovova N, Zhang X, Liu S, Zou X, Hanig JP, Paule MG, Slikker W, Wang C. Ketamine-induced neuronal damage and altered N-methyl-D-aspartate receptor function in rat primary forebrain culture. Toxicol Sci 2012; 131:548-57. [PMID: 23065140 DOI: 10.1093/toxsci/kfs296] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is frequently used in pediatric general anesthesia. Accumulating evidence from animal experiments has demonstrated that ketamine causes neuronal cell death during the brain growth spurt. To elucidate the underlying mechanisms associated with ketamine-induced neuronal toxicity and search for approaches or agents to prevent ketamine's adverse effects on the developing brain, a primary nerve cell culture system was utilized. Neurons harvested from the forebrain of newborn rats were maintained under normal control conditions or exposed to either ketamine (10 µM) or ketamine plus L-carnitine (an antioxidant; 1-100 µM) for 24h, followed by a 24-h withdrawal period. Ketamine exposure resulted in elevated NMDA receptor (NR1) expression, increased generation of reactive oxygen species (ROS) as indicated by higher levels of 8-oxoguanine production, and enhanced neuronal damage. Coadministration of L-carnitine significantly diminished ROS generation and provided near complete protection of neurons from ketamine-induced cell death. NMDA receptors regulate channels that are highly permeable to calcium, and calcium imaging data demonstrated that neurons exposed to ketamine had a significantly elevated amplitude of calcium influx and higher intracellular free calcium concentrations ([Ca(2+)]i) evoked by NMDA (50 µM), compared with control neurons. These findings suggest that prolonged ketamine exposure produces an increase in NMDA receptor expression (compensatory upregulation), which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to elevated ROS generation and neuronal cell death. L-Carnitine appears to be a promising agent in preventing or reversing ketamine's toxic effects on neurons at an early developmental stage.
Collapse
Affiliation(s)
- Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079-0502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|