1
|
Porel P, Bala K, Aran KR. Exploring the role of HIF-1α on pathogenesis in Alzheimer's disease and potential therapeutic approaches. Inflammopharmacology 2025; 33:669-678. [PMID: 39465478 DOI: 10.1007/s10787-024-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a crucial transcription factor that regulates cellular responses to low oxygen levels (hypoxia). In Alzheimer's disease (AD), emerging evidence suggests a significant involvement of HIF-1α in disease pathogenesis. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to neuronal dysfunction and cognitive decline. HIF-1α is implicated in AD through its multifaceted roles in various cellular processes. Firstly, in response to hypoxia, HIF-1α promotes the expression of genes involved in angiogenesis, which is crucial for maintaining cerebral blood flow and oxygen delivery to the brain. However, in the context of AD, dysregulated HIF-1α activation may exacerbate cerebral hypoperfusion, contributing to neuronal damage. Moreover, HIF-1α is implicated in the regulation of Aβ metabolism. It can influence the production and clearance of Aβ peptides, potentially modulating their accumulation and toxicity in the brain. Additionally, HIF-1α activation has been linked to neuroinflammation, a key feature of AD pathology. It can promote the expression of pro-inflammatory cytokines and exacerbate neuronal damage. Furthermore, HIF-1α may play a role in synaptic plasticity and neuronal survival, which are impaired in AD. Dysregulated HIF-1α signaling could disrupt these processes, contributing to cognitive decline and neurodegeneration. Overall, the involvement of HIF-1α in various aspects of AD pathophysiology highlights its potential as a therapeutic target. Modulating HIF-1α activity could offer novel strategies for mitigating neurodegeneration and preserving cognitive function in AD patients. However, further research is needed to elucidate the precise mechanisms underlying HIF-1α dysregulation in AD and to develop targeted interventions.
Collapse
Affiliation(s)
- Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Wang LJ, Zhao Y, Wang YS, Xing L, Duan YJ, Zang HH. The IL-10/STAT3 Axis Nasopharyngeal Carcinoma Cancer stem cell and radio resistance. Sci Rep 2024; 14:31943. [PMID: 39738457 PMCID: PMC11685382 DOI: 10.1038/s41598-024-83423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
One of the primary reasons for the failure of therapy in nasopharyngeal cancer (NPC) is radio resistance-related localized one, which may lead to tumor residuals or recurrences. Several studies have linked interleukin-10 (IL-10) to crucial functions in cancer development and response to therapy. Its function in NPC's radio resistance is, however, not well understood. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR were utilized for confirming IL-10 expression in NPC cell lines. The prognostic significance of IL-10 was also assessed via Kaplan-Meier analysis. CNE2R, a radioresistant NPC cell line, expressed IL-10 at high levels, which were also shown to be considerably elevated in individuals with radioresistant NPC, as measured by ELISA. Moreover, the levels were also linked to poor clinical outcomes and prognosis in cancer cases. We also showed some evidence of a link between hypoxia-inducible factor 1-alpha (HIF-1 A) and serum IL-10 levels in NPC. Meanwhile, we find that IL-10 is up-regulated in CSC. IL-10 enhanced the self-renewal and tumorigenesis of nasopharyngeal CSC. In terms of mechanism, IL-10 enhances nasopharyngeal CSC self-renewal and tumorigenesis by activating STAT3 pathway. In NPC, IL-10/STAT3 Axis Nasopharyngeal Carcinoma Cancer stem cell and radio resistance.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Otolaryngology Head and Neck Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Ying Zhao
- Department of Otolaryngology Head and Neck Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Yan-Sheng Wang
- Department of Nuclear Medicine, General Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Lei Xing
- Department of Otolaryngology Head and Neck Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Yun-Jing Duan
- Department of Otolaryngology Head and Neck Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Huan-Huan Zang
- Department of Otolaryngology Head and Neck Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
3
|
Bonet-Aleta J, Alegre-Requena JV, Martin-Martin J, Encinas-Gimenez M, Martín-Pardillos A, Martin-Duque P, Hueso JL, Santamaria J. Nanoparticle-Catalyzed Transamination under Tumor Microenvironment Conditions: A Novel Tool to Disrupt the Pool of Amino Acids and GSSG in Cancer Cells. NANO LETTERS 2024; 24:4091-4100. [PMID: 38489158 PMCID: PMC11010231 DOI: 10.1021/acs.nanolett.3c04947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free -NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta
Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Juan Vicente Alegre-Requena
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Javier Martin-Martin
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta
Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Department
of Organic Chemistry, University of Zaragoza, 50009 Zaragoza Spain
| | - Miguel Encinas-Gimenez
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta
Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta
Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Pilar Martin-Duque
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
- Surgery Department,
Medicine Medical School, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jose L. Hueso
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta
Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesus Santamaria
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta
Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Yang ZY, Li LG, Xiong YL, Chen NN, Yu TT, Li HT, Ren T, You H, Wang X, Li TF, Wang MF, Hu J. Cepharanthine synergizes with photodynamic therapy for boosting ROS-driven DNA damage and suppressing MTH1 as a potential anti-cancer strategy. Photodiagnosis Photodyn Ther 2024; 45:103917. [PMID: 38042236 DOI: 10.1016/j.pdpdt.2023.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Yi-Lian Xiong
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Nan-Nan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Ting-Ting Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hai-Tao Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Tao Ren
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Hui You
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xiao Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
5
|
Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, El-Huneidi W, Saleh MA, Alzoubi KH, Semreen MH, Hudaib M, Bustanji Y. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel) 2024; 17:195. [PMID: 38399410 PMCID: PMC10892333 DOI: 10.3390/ph17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.
Collapse
Affiliation(s)
- Reem A. Qannita
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ayah I. Alalami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shereen M. Aleidi
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Hudaib
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| |
Collapse
|
6
|
Yi M, Xiong B, Li Y, Guo W, Huang Y, Lu B. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur J Med Chem 2023; 247:115084. [PMID: 36599230 DOI: 10.1016/j.ejmech.2022.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Due to its low adverse effects, minimal invasiveness, and outstanding patient compliance, photodynamic therapy (PDT) has drawn a great deal of interest, which is achieved through incomplete reduction of O2 by a photosensitizer under light illumination that produces amounts of reactive oxygen species (ROS). However, tumor hypoxia significantly hinders the therapeutic effect of PDT so that tumor cells cannot be eliminated, which results in tumor cells proliferating, invading, and metastasizing. Additionally, O2 consumption during PDT exacerbates hypoxia in tumors, leading to several adverse events after PDT treatment. In recent years, various investigations have focused on conquering or using tumor hypoxia by nanomaterials to amplify PDT efficacy, which is summarized in this review. This comprehensive review's objective is to present novel viewpoints on the advancement of oxygenation nanomaterials in this promising field, which is motivated by hypoxia-associated anti-tumor therapy.
Collapse
Affiliation(s)
- Mengqi Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuyang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
7
|
Chen L, Huang J, Li X, Huang M, Zeng S, Zheng J, Peng S, Li S. Progress of Nanomaterials in Photodynamic Therapy Against Tumor. Front Bioeng Biotechnol 2022; 10:920162. [PMID: 35711646 PMCID: PMC9194820 DOI: 10.3389/fbioe.2022.920162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is an advanced therapeutic strategy with light-triggered, minimally invasive, high spatiotemporal selective and low systemic toxicity properties, which has been widely used in the clinical treatment of many solid tumors in recent years. Any strategies that improve the three elements of PDT (light, oxygen, and photosensitizers) can improve the efficacy of PDT. However, traditional PDT is confronted some challenges of poor solubility of photosensitizers and tumor suppressive microenvironment. To overcome the related obstacles of PDT, various strategies have been investigated in terms of improving photosensitizers (PSs) delivery, penetration of excitation light sources, and hypoxic tumor microenvironment. In addition, compared with a single treatment mode, the synergistic treatment of multiple treatment modalities such as photothermal therapy, chemotherapy, and radiation therapy can improve the efficacy of PDT. This review summarizes recent advances in nanomaterials, including metal nanoparticles, liposomes, hydrogels and polymers, to enhance the efficiency of PDT against malignant tumor.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Huang
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - Xiaotong Li
- Guangzhou Medical University, Guangzhou, China
| | | | | | - Jiayi Zheng
- Guangzhou Medical University, Guangzhou, China
| | - Shuyi Peng
- Guangzhou Medical University, Guangzhou, China
| | - Shiying Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shiying Li,
| |
Collapse
|