1
|
Shan Y, Cao F, Zhao X, Luo J, Mei H, Zhang L, Huang Y, Yang Y, Yan L, Huang Y, Han Y, Guo B. Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair. Biomaterials 2025; 315:122936. [PMID: 39509859 DOI: 10.1016/j.biomaterials.2024.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Procoagulant, antibacterial and analgesic hemostatic hydrogel dressing with high wet tissue adhesion, ultra-high burst pressure, and easy preparation shows huge promising for rapid hemostasis in emergencies, yet it remains a challenge. Herein, we propose hemostatic microsheets based on quaternized chitosan-g-gallic acid (QCS-GA) and oxidized hyaluronic acid (OHA), which merge the benefits of sponges, hydrogels, and powders for rapid hemostasis and efficient wound healing. Specifically, they exhibit a large specific surface area and excellent hydrophilicity, rapidly absorbing blood and self-gelling through electrostatic interaction and Schiff base crosslinking. And this results in dense, porous hydrogel adhesives with superior mechanical properties, adhesion strength, and ultra-high burst pressure. Furthermore, the microsheets are biocompatible, biodegradable, and possess procoagulant, antibacterial, and antioxidant properties. In mouse and rat liver hemorrhage models, the optimized formulation (QCS-GA + OHA4) demonstrated superior hemostatic effects compared to Celox. In particular, QCS-GA + OHA4 microsheets could stop bleeding quickly from rat femoral artery transection and deliver lidocaine to provide analgesia during emergency treatment. Additionally, they promoted wound healing in mouse full-thickness skin defect wound. These easy-to-manufacture hemostatic microsheets are adaptable to irregular wounds, providing a novel solution for rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Yingli Shan
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Cao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haoliang Mei
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Limou Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yutong Yang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangruijie Yan
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yayong Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Zhou Q, Shi Z, Xia L, Mi J, Zhang Y, Xu X, Pan J. Breaking the boundaries of wound closure: A novel polyurethane tissue adhesive with enhanced healing properties. J Biomed Mater Res A 2024; 112:2301-2313. [PMID: 39044597 DOI: 10.1002/jbm.a.37770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Over the past few decades, there have been advancements in the development of high-performance tissue adhesives as alternatives to traditional sutures and staples for rapid and effective wound closure post-surgery. While tissue adhesives offer advantages such as ease of use, short application time, and minimal tissue damage, they also face challenges related to biocompatibility, biodegradability, and adhesive strength. In this study, L-lysine diisocyanate (LDI) and trimethylolpropane (TMP) were utilized as the primary raw materials to produce a prepolymer terminated with NCO, resulting in the development of a new biocompatible polyurethane tissue adhesive (TMP-LDI). Additionally, SiO2 nanoparticles were incorporated into the prepolymer, significantly enhancing the adhesive strength of the TMP-LDI tissue adhesive through the "nanobridging effect," achieving a strength of 170.4 kPa. Furthermore, the SiO2/TMP-LDI tissue adhesive exhibited satisfactory temperature change during curing and degradation performance. In vitro and in vivo studies demonstrated that SiO2/TMP-LDI exhibited good biocompatibility, efficient hemostasis, antimicrobial properties, and the ability to promote wound healing. This research presents a novel approach for the development of tissue adhesives with superior adhesive performance.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Zhaocheng Shi
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Liyao Xia
- Research Base of Textile Materials for Flexible Electronics and Biomedical Applications, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, China
| | - Jing Mi
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Yuejiao Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Xiaobo Xu
- Hefei Stomatological Hospital, Hefei Clinical College of Stomatology, Anhui Medical University, Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Jie Pan
- Shanghai Fengxian Stomatological Hospital, Shanghai, China
| |
Collapse
|
3
|
Liu S, Xiang Y, Liu Z, Li L, Dang R, Zhang H, Wei F, Chen Y, Yang X, Mao M, Zhang YS, Song J, Zhang X. A Nature-Derived, Hetero-Structured, Pro-Healing Bioadhesive Patch for High-Performance Sealing of Wet Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309774. [PMID: 38490747 DOI: 10.1002/adma.202309774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/24/2024] [Indexed: 03/17/2024]
Abstract
Tissue adhesives are promising alternatives to sutures and staples to achieve wound closure and hemostasis. However, they often do not work well on tissues that are soaked in blood or other biological fluids, and organs that are typically exposed to a variety of harsh environments such as different pH values, nonhomogeneous distortions, continuous expansions and contractions, or high pressures. In this study, a nature-derived multilayered hetero-bioadhesive patch (skin secretion of Andrias davidianus (SSAD)-Patch) based on hydrophilic/hydrophobic pro-healing bioadhesives derived from the SSAD is developed, which is designed to form pressure-triggered strong adhesion with wet tissues. The SSAD-Patch is successfully applied for the sealing and healing of tissue defects within 10 s in diverse extreme injury scenarios in vivo including rat stomach perforation, small intestine perforation, fetal membrane defect, porcine carotid artery incision, and lung lobe laceration. The findings reveal a promising new type of self-adhesive regenerative SSAD-Patch, which is potentially adaptable to broad applications (under different pH values and air or liquid pressures) in sutureless wound sealing and healing.
Collapse
Affiliation(s)
- Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yangfan Xiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Zekun Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Lan Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Huicong Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Feng Wei
- The People's Hospital of Kaizhou District, Chongqing, 405499, P. R. China
| | - Yuqin Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiang Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Mengjie Mao
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
4
|
Huang Y, Hu W, Xu K, Dan R, Tan S, Shu Z, Li X, Liu H, Fan C, Xing M, Yang S. Plant mucus-derived microgels: Blood-triggered gelation and strong hemostatic adhesion. Biomaterials 2024; 307:122535. [PMID: 38518590 DOI: 10.1016/j.biomaterials.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Arrest of bleeding usually applies clotting agents to trigger coagulation procedures or adhesives to interrupt blood flow through sealing the vessel; however, the efficiency is compromised. Here, we propose a concept of integration of hemostasis and adhesion via yam mucus's microgels. The mucus microgels exhibit attractive attributes of hydrogel with uniform size and shape. Their shear-thinning, self-healing and strong adhesion make them feasible as injectable bioadhesion. Exceptionally, the blood can trigger the microgels' gelation with the outcome of super extensibility, which leads to the microgels a strong hemostatic agent. We also found a tight gel adhesive layer formed upon microgels' contacting the blood on the tissue, where there is the coagulation factor XIII triggered to form a dense three-dimensional fibrin meshwork. The generated structures show that the microgels look like hard balls in the dispersed phase into the blood-produced fibrin mesh of a soft net phase. Both phases work together for a super-extension gel. We demonstrated the microgels' fast adhesion and hemostasis in the livers and hearts of rabbits and mini pigs. The microgels also promoted wound healing with good biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg MB, R3T 2N2, Manitoba, Canada
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Shali Tan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Xin Li
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Hangzong Liu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China; Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg MB, R3T 2N2, Manitoba, Canada.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China; Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China.
| |
Collapse
|
5
|
Chen J, Tang X, Wang Z, Perez A, Yao B, Huang K, Zhang Y, King MW. Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioeng Transl Med 2023; 8:e10565. [PMID: 38023705 PMCID: PMC10658569 DOI: 10.1002/btm2.10565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 12/01/2023] Open
Abstract
Postsurgical adhesions are a common complication of surgical procedures that can lead to postoperative pain, bowel obstruction, infertility, as well as complications with future procedures. Several agents have been developed to prevent adhesion formation, such as barriers, anti-inflammatory and fibrinolytic agents. The Food and Drug Administration (FDA) has approved the use of physical barrier agents, but they have been associated with conflicting clinical studies and controversy in the clinical utilization of anti-adhesion barriers. In this review, we summarize the human anatomy of the peritoneum, the pathophysiology of adhesion formation, the current prevention agents, as well as the current research progress on adhesion prevention. The early cellular events starting with injured mesothelial cells and incorporating macrophage response have recently been found to be associated with adhesion formation. This may provide the key component for developing future adhesion prevention methods. The current use of physical barriers to separate tissues, such as Seprafilm®, composed of hyaluronic acid and carboxymethylcellulose, can only reduce the risk of adhesion formation at the end stage. Other anti-inflammatory or fibrinolytic agents for preventing adhesions have only been studied within the context of current research models, which is limited by the lack of in-vitro model systems as well as in-depth study of in-vivo models to evaluate the efficiency of anti-adhesion agents. In addition, we explore emerging therapies, such as gene therapy and stem cell-based approaches, that may offer new strategies for preventing adhesion formation. In conclusion, anti-adhesion agents represent a promising approach for reducing the burden of adhesion-related complications in surgical patients. Further research is needed to optimize their use and develop new therapies for this challenging clinical problem.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Xiaoqi Tang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ziyu Wang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Arielle Perez
- UNC School of Medicine Department of SurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Benjamin Yao
- Montefiore Medical Center Department of Obstetrics & Gynecology & Women's Health ServicesMontefiore Medical CenterBronxNew YorkUSA
| | - Ke Huang
- Joint Department of Biomedical EngineeringNorth Carolina State University & University of North Carolina at Chapel HillRaleighNorth CarolinaUSA
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - Yang Zhang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Martin W. King
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
- College of Textiles, Donghua UniversityShanghaiSongjiangChina
| |
Collapse
|
6
|
Cui D, Li M, Zhang P, Rao F, Huang W, Wang C, Guo W, Wang T. Polydopamine-Coated Polycaprolactone Electrospun Nanofiber Membrane Loaded with Thrombin for Wound Hemostasis. Polymers (Basel) 2023; 15:3122. [PMID: 37514511 PMCID: PMC10385294 DOI: 10.3390/polym15143122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Hemorrhagic shock is the primary cause of death in patients with severe trauma, and the development of rapid and efficient hemostatic methods is of great significance in saving the lives of trauma patients. In this study, a polycaprolactone (PCL) nanofiber membrane was prepared by electrospinning. A PCL-PDA loading system was developed by modifying the surface of polydopamine (PDA), using inspiration from mussel adhesion protein, and the efficient and stable loading of thrombin (TB) was realized to ensure the bioactivity of TB. The new thrombin loading system overcomes the disadvantages of harsh storage conditions, poor strength, and ease of falling off, and it can use thrombin to start a rapid coagulation cascade reaction, which has the characteristics of fast hemostasis, good biocompatibility, high safety, and a wide range of hemostasis. The physicochemical properties and biocompatibility of the PCL-PDA-TB membrane were verified by scanning electron microscopy, the cell proliferation test, the cell adhesion test, and the extract cytotoxicity test. Red blood cell adhesion, platelet adhesion, dynamic coagulation time, and animal models all verified the coagulation effect of the PCL-PDA-TB membrane. Therefore, the PCL-PDA-TB membrane has great potential in wound hemostasis applications, and should be widely used in various traumatic hemostatic scenarios.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Ming Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Feng Rao
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Chuanlin Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Wei Guo
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|