1
|
Yao GQ, Zhu M, Insogna K. PTH-dependent stabilization of RANKL mRNA is associated with increased phosphorylation of the KH-type splicing regulatory protein. Mol Cell Endocrinol 2025; 595:112412. [PMID: 39536935 DOI: 10.1016/j.mce.2024.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.4-fold elevation in RANKL mRNA expression in UAMS-32P cells, despite prior inhibition of cellular transcription by thiophosphoryl (TPL). RANKL mRNA, like other TNF family members, contains AU-Rich Elements (AREs) in the 3' UTR. AU-Rich Element Binding Proteins (ABPs including KSRP, TTP, AUF1 and HuR) bind to AREs and regulate mRNA stability. There was significantly more KSRP bound to RANKL mRNA than any of the other ABPs. PTH did not increase the amount of ABPs bound to the RANKL transcript. However, the level of cellular phosphorylated KSRP was significantly increased in UAMS-32P cells pre-treated with TPL followed by PTH exposure, compared to cells treated with vehicle following TPL. The extent of phosphorylation of cellular AUF1, HuR, and TTP did not increase with PTH treatment. There were no significant changes in the cellular content of total Pin1 and phospho-Pin1 protein with PTH treatment. We conclude that increases in cellular phospho-KSRP following PTH treatment, together with fact that the total amount of the KSRP bound to the RANKL mRNA did not change with PTH-treatment, may indicate that phospho-KSRP plays some role in stabilizing the RANKL transcript.
Collapse
Affiliation(s)
- Gang-Qing Yao
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Meiling Zhu
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Karl Insogna
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
2
|
Hayek H, Gross L, Alghoul F, Martin F, Eriani G, Allmang C. Immunoprecipitation Methods to Isolate Messenger Ribonucleoprotein Complexes (mRNP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:1-15. [PMID: 38507196 DOI: 10.1007/978-3-031-52193-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Lauriane Gross
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Fatima Alghoul
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Franck Martin
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Filippelli RL, Omer A, Li S, van Oostende-Triplet C, Gallouzi IE, Chang NC. Automated Quantification of Subcellular Particles in Myogenic Progenitors. Curr Protoc 2021; 1:e325. [PMID: 34879178 DOI: 10.1002/cpz1.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy is a powerful tool enabling the visualization of protein localization within cells. In this article, we outline an automated and non-biased way to detect and quantify subcellular particles using immunocytochemistry, fluorescence microscopy, and the program CellProfiler. We discuss the examination of two types of subcellular particles: messenger ribonucleoprotein (mRNP) granules, namely processing bodies and stress granules, and autophagosomes. Fluorescent microscopy Z-stacks are acquired and deconvolved, and maximum intensity images are generated. The number of subcellular particles per cell is then quantified using the described CellProfiler pipeline. We also explain how to isolate primary myoblast progenitor cells from mice, which were used to obtain the presented results. Last, we discuss the critical parameters to be considered for each of these techniques. Both mRNP granules and autophagosomes play important roles in sequestering intracellular cargo, such as messenger RNAs and RNA-binding proteins for mRNP granules and cytoplasmic waste for autophagosomes. The methods outlined in this article are widely applicable for studies relating to subcellular particle formation, localization, and flux during homeostasis, following stimuli, and during disease. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescence microscopy of messenger ribonucleoprotein granules in primary myoblasts Alternate Protocol: Immunofluorescence microscopy of autophagosomes in primary myoblasts Support Protocol: Isolation of primary myoblasts from mice Basic Protocol 2: Automated quantification of subcellular particles.
Collapse
Affiliation(s)
| | - Amr Omer
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Shulei Li
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | - Imed E Gallouzi
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Natasha C Chang
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Just PA, Charawi S, Denis RGP, Savall M, Traore M, Foretz M, Bastu S, Magassa S, Senni N, Sohier P, Wursmer M, Vasseur-Cognet M, Schmitt A, Le Gall M, Leduc M, Guillonneau F, De Bandt JP, Mayeux P, Romagnolo B, Luquet S, Bossard P, Perret C. Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nat Commun 2020; 11:6127. [PMID: 33257663 PMCID: PMC7705018 DOI: 10.1038/s41467-020-19490-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive glucose production by the liver is a key factor in the hyperglycemia observed in type 2 diabetes mellitus (T2DM). Here, we highlight a novel role of liver kinase B1 (Lkb1) in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect is observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion is associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic, proteomic and pharmacological approaches, we identify the aminotransferases and specifically Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis. Excessive glucose production by the liver contributes to poor blood glucose control in type 2 diabetes. Here the authors report that the liver kinase B1 (Lkb1) suppresses amino acid driven postprandial glucose production in the liver through the aminotransferase Agxt.
Collapse
Affiliation(s)
- Pierre-Alexandre Just
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,APHP, Centre-Université de Paris, Paris, France
| | - Sara Charawi
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Raphaël G P Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Mathilde Savall
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Massiré Traore
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Sultan Bastu
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | | | - Nadia Senni
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Pierre Sohier
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Maud Wursmer
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRA 1392, Sorbonne Universités Paris and Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy, France
| | - Alain Schmitt
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,Electron Miscroscopy Facility, Institut Cochin, F75014, Paris, France
| | - Morgane Le Gall
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Marjorie Leduc
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - François Guillonneau
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Béatrice Romagnolo
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Pascale Bossard
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Christine Perret
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.
| |
Collapse
|
6
|
Bansal P, Arora M. RNA Binding Proteins and Non-coding RNA's in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:105-118. [PMID: 32285407 DOI: 10.1007/978-981-15-1671-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality as well as morbidity worldwide. The disease has been reported to be chronic in nature and the symptoms of the disease worsen progressively over a long period of time. Inspite of noteworthy achievements have been made in the therapy of CVD yet the available drugs are associated with various undesirable factors including drug toxicity, complexity, resistance and many more. The versatility of RNAs makes them crucial therapeutics candidate for many human diseases. Deeper understanding of RNA biology, exploring new classes of RNA that possess therapeutic potential will help in its successful translation to the clinic. Understanding the mode of action of various RNAs such as miRNA, RNA binding proteins and siRNA in CVD will help in improved therapeutics among patients. Multiple strategies are being planned to determine the future potential of miRNAs to treat a disease. This review embodies the recent work done in the field of miRNA and its role in cardiovascular disease as diagnostic biomarker as well as therapeutic agents. In addition the review highlights the future of miRNAs as a potential therapeutic target and need of designing micronome that may reveal potential predictive targets of miRNA-mRNA interaction.
Collapse
Affiliation(s)
- Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Malika Arora
- Multidisciplinary Research Unit, Guru Gobind Singh Medical College, Faridkot, Punjab, India
| |
Collapse
|
7
|
Otsuka H, Fukao A, Funakami Y, Duncan KE, Fujiwara T. Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front Genet 2019; 10:332. [PMID: 31118942 PMCID: PMC6507484 DOI: 10.3389/fgene.2019.00332] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of posttranscriptional gene expression and control many important biological processes including cell proliferation, development, and differentiation. RBPs bind specific motifs in their target mRNAs and regulate mRNA fate at many steps. The AU-rich element (ARE) is one of the major cis-regulatory elements in the 3′ untranslated region (UTR) of labile mRNAs. Many of these encode factors requiring very tight regulation, such as inflammatory cytokines and growth factors. Disruption in the control of these factors’ expression can cause autoimmune diseases, developmental disorders, or cancers. Therefore, these mRNAs are strictly regulated by various RBPs, particularly ARE-binding proteins (ARE-BPs). To regulate mRNA metabolism, ARE-BPs bind target mRNAs and affect some factors on mRNAs directly, or recruit effectors, such as mRNA decay machinery and protein kinases to target mRNAs. Importantly, some ARE-BPs have stabilizing roles, whereas others are destabilizing, and ARE-BPs appear to compete with each other when binding to target mRNAs. The function of specific ARE-BPs is modulated by posttranslational modifications (PTMs) including methylation and phosphorylation, thereby providing a means for cellular signaling pathways to regulate stability of specific target mRNAs. In this review, we summarize recent studies which have revealed detailed molecular mechanisms of ARE-BP-mediated regulation of gene expression and also report on the importance of ARE-BP function in specific physiological contexts and how this relates to disease. We also propose an mRNP regulatory network based on competition between stabilizing ARE-BPs and destabilizing ARE-BPs.
Collapse
Affiliation(s)
- Hiroshi Otsuka
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | | | - Kent E Duncan
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
8
|
Garcia-Moreno M, Noerenberg M, Ni S, Järvelin AI, González-Almela E, Lenz CE, Bach-Pages M, Cox V, Avolio R, Davis T, Hester S, Sohier TJM, Li B, Heikel G, Michlewski G, Sanz MA, Carrasco L, Ricci EP, Pelechano V, Davis I, Fischer B, Mohammed S, Castello A. System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Mol Cell 2019; 74:196-211.e11. [PMID: 30799147 PMCID: PMC6458987 DOI: 10.1016/j.molcel.2019.01.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 12/23/2022]
Abstract
The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed “comparative RIC” and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells. A quarter of the RBPome changes upon SINV infection Alterations in RBP activity are largely explained by changes in RNA availability Altered RBPs are crucial for viral infection efficacy GEMIN5 binds to the 5′ end of SINV RNAs and regulates viral gene expression
Collapse
Affiliation(s)
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Shuai Ni
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Esther González-Almela
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Caroline E Lenz
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Marcel Bach-Pages
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Victoria Cox
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Rosario Avolio
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Thomas Davis
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Thibault J M Sohier
- Université de Lyon, ENSL, UCBL, CNRS, INSERM, LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Bingnan Li
- SciLifeLab, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Gregory Heikel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK; Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Gracjan Michlewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK; Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Zhejiang University-University of Edinburgh Institute, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, People's Republic of China
| | - Miguel A Sanz
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Emiliano P Ricci
- Université de Lyon, ENSL, UCBL, CNRS, INSERM, LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Bernd Fischer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK.
| |
Collapse
|
9
|
Guarino AM, Troiano A, Pizzo E, Bosso A, Vivo M, Pinto G, Amoresano A, Pollice A, La Mantia G, Calabrò V. Oxidative Stress Causes Enhanced Secretion of YB-1 Protein that Restrains Proliferation of Receiving Cells. Genes (Basel) 2018; 9:genes9100513. [PMID: 30360431 PMCID: PMC6210257 DOI: 10.3390/genes9100513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/03/2023] Open
Abstract
The prototype cold-shock Y-box binding protein 1 (YB-1) is a multifunctional protein that regulates a variety of fundamental biological processes including cell proliferation and migration, DNA damage, matrix protein synthesis and chemotaxis. The plethora of functions assigned to YB-1 is strictly dependent on its subcellular localization. In resting cells, YB-1 localizes to cytoplasm where it is a component of messenger ribonucleoprotein particles. Under stress conditions, YB-1 contributes to the formation of stress granules (SGs), cytoplasmic foci where untranslated messenger RNAs (mRNAs) are sorted or processed for reinitiation, degradation, or packaging into ribonucleoprotein particles (mRNPs). Following DNA damage, YB-1 translocates to the nucleus and participates in DNA repair thereby enhancing cell survival. Recent data show that YB-1 can also be secreted and YB-1-derived polypeptides are found in plasma of patients with sepsis and malignancies. Here we show that in response to oxidative insults, YB-1 assembly in SGs is associated with an enhancement of YB-1 protein secretion. An enriched fraction of extracellular YB-1 (exYB-1) significantly inhibited proliferation of receiving cells and such inhibition was associated to a G2/M cell cycle arrest, induction of p21WAF and reduction of ΔNp63α protein level. All together, these data show that acute oxidative stress causes sustained release of YB-1 as a paracrine/autocrine signal that stimulate cell cycle arrest.
Collapse
Affiliation(s)
- Andrea Maria Guarino
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Annaelena Troiano
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Elio Pizzo
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Andrea Bosso
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Maria Vivo
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Gabriella Pinto
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Alessandra Pollice
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Girolama La Mantia
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Viola Calabrò
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| |
Collapse
|
10
|
Matsumoto K, Kose S, Kuwahara I, Yoshimura M, Imamoto N, Yoshida M. Y-box protein-associated acidic protein (YBAP1/C1QBP) affects the localization and cytoplasmic functions of YB-1. Sci Rep 2018; 8:6198. [PMID: 29670170 PMCID: PMC5906478 DOI: 10.1038/s41598-018-24401-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
The Y-box proteins are multifunctional nucleic acid-binding proteins involved in various aspects of gene regulation. The founding member of the Y-box protein family, YB-1, functions as a transcription factor as well as a principal component of messenger ribonucleoprotein particles (mRNPs) in somatic cells. The nuclear level of YB-1 is well correlated with poor prognosis in many human cancers. Previously, we showed that a Y-box protein–associated acidic protein, YBAP1, which is identical to complement component 1, q subcomponent-binding protein (C1QBP, also called gC1qR, hyaluronan-binding protein 1 [HABP1] or ASF/SF2-associated protein p32), relieves translational repression by YB-1. Here we show that the nuclear localization of YB-1 harboring a point mutation in the cold shock domain was inhibited when co-expressed with YBAP1, whereas cytoplasmic accumulation of the wild-type YB-1 was not affected. We showed that YBAP1 inhibited the interaction between YB-1 and transportin 1. In the cytoplasm, YBAP1 affected the accumulation of YB-1 to processing bodies (P-bodies) and partially abrogated the mRNA stabilization by YB-1. Our results, indicating that YBAP1/C1QBP regulates the nucleo-cytoplasmic distribution of YB-1 and its cytoplasmic functions, are consistent with a model that YBAP1/C1QBP acts as an mRNP remodeling factor.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan. .,Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Iku Kuwahara
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mami Yoshimura
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
11
|
Abstract
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Collapse
|
12
|
Liao Y, Castello A, Fischer B, Leicht S, Föehr S, Frese CK, Ragan C, Kurscheid S, Pagler E, Yang H, Krijgsveld J, Hentze MW, Preiss T. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease. Cell Rep 2016; 16:1456-1469. [PMID: 27452465 PMCID: PMC4977271 DOI: 10.1016/j.celrep.2016.06.084] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism. mRNA interactome capture and RBDmap reveal the cardiomyocyte RNA-binding proteome 1,148 RBPs are identified, 393 of which are thus far unique to cardiomyocytes Many cardiac RBPs have links to heart disease and mitochondrial metabolism Contacts of metabolic enzymes with RNA frequently involve Rossmann fold domains
Collapse
Affiliation(s)
- Yalin Liao
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Alfredo Castello
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefan Leicht
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sophia Föehr
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian K Frese
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Chikako Ragan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Sebastian Kurscheid
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Eloisa Pagler
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Hao Yang
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia; Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), NSW 2010, Australia.
| |
Collapse
|
13
|
Romaniuk MA, Cervini G, Cassola A. Regulation of RNA binding proteins in trypanosomatid protozoan parasites. World J Biol Chem 2016; 7:146-157. [PMID: 26981203 PMCID: PMC4768119 DOI: 10.4331/wjbc.v7.i1.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/04/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins (RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3’ untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of mRNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy.
Collapse
|
14
|
Recruitment, Duplex Unwinding and Protein-Mediated Inhibition of the Dead-Box RNA Helicase Dbp2 at Actively Transcribed Chromatin. J Mol Biol 2016; 428:1091-1106. [PMID: 26876600 DOI: 10.1016/j.jmb.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
RNA helicases play fundamental roles in modulating RNA structures and facilitating RNA-protein (RNP) complex assembly in vivo. Previously, our laboratory demonstrated that the DEAD-box RNA helicase Dbp2 in Saccharomyces cerevisiae is required to promote efficient assembly of the co-transcriptionally associated mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)(+)RNA. We also found that Yra1 associates directly with Dbp2 and functions as an inhibitor of Dbp2-dependent duplex unwinding, suggestive of a cycle of unwinding and inhibition by Dbp2. To test this, we undertook a series of experiments to shed light on the order of events for Dbp2 in co-transcriptional mRNP assembly. We now show that Dbp2 is recruited to chromatin via RNA and forms a large, RNA-dependent complex with Yra1 and Mex67. Moreover, single-molecule fluorescence resonance energy transfer and bulk biochemical assays show that Yra1 inhibits unwinding in a concentration-dependent manner by preventing the association of Dbp2 with single-stranded RNA. This inhibition prevents over-accumulation of Dbp2 on mRNA and stabilization of a subset of RNA polymerase II transcripts. We propose a model whereby Yra1 terminates a cycle of mRNP assembly by Dbp2.
Collapse
|
15
|
Roles of Prolyl Isomerases in RNA-Mediated Gene Expression. Biomolecules 2015; 5:974-99. [PMID: 25992900 PMCID: PMC4496705 DOI: 10.3390/biom5020974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
The peptidyl-prolyl cis-trans isomerases (PPIases) that include immunophilins (cyclophilins and FKBPs) and parvulins (Pin1, Par14, Par17) participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.
Collapse
|
16
|
Shen ZJ, Malter JS. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Biomolecules 2015; 5:412-34. [PMID: 25874604 PMCID: PMC4496679 DOI: 10.3390/biom5020412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023] Open
Abstract
The accumulation of 3' untranslated region (3'-UTR), AU-rich element (ARE) containing mRNAs, are predominantly controlled at the post-transcriptional level. Regulation appears to rely on a variable and dynamic interaction between mRNA target and ARE-specific binding proteins (AUBPs). The AUBP-ARE mRNA recognition is directed by multiple intracellular signals that are predominantly targeted at the AUBPs. These include (but are unlikely limited to) methylation, acetylation, phosphorylation, ubiquitination and isomerization. These regulatory events ultimately affect ARE mRNA location, abundance, translation and stability. In this review, we describe recent advances in our understanding of phosphorylation and its impact on conformation of the AUBPs, interaction with ARE mRNAs and highlight the role of Pin1 mediated prolyl cis-trans isomerization in these biological process.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| |
Collapse
|