1
|
Xu YR, Tang DY, Xiao ZP, Huang ZT, Zhang HR, Tang ZW, He F. Effects of polylactic acid scaffolds with various orientations and diameters on osteogenesis and angiogenesis. Front Bioeng Biotechnol 2025; 12:1495810. [PMID: 39834633 PMCID: PMC11743647 DOI: 10.3389/fbioe.2024.1495810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. In vitro, the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation. However, more comprehensive investigations, including in vivo studies, are required to confirm the results observed in vitro. Accordingly, in the present study, fibre scaffolds with various orientations and diameters were prepared by electrospinning with polylactic acid. The effects of the micromorphological characteristics of these scaffolds with different orientations and diameters on osteogenesis and vascularisation were systematically studied via in vivo experiments. The scaffolds with aligned micromorphological features positively affected osteogenesis and vascularisation, which indicated that such characteristics could be considered crucial factors when designing materials for bone repair.
Collapse
Affiliation(s)
- Yun Rong Xu
- Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Dai Yuan Tang
- Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Zhen Ping Xiao
- Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Zai Tian Huang
- Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Heng Rui Zhang
- Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Zi Wen Tang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| |
Collapse
|
2
|
Bagchi A, Sarker B, Zhang J, Foston M, Pathak A. Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission. PLoS Comput Biol 2025; 21:e1012664. [PMID: 39787053 PMCID: PMC11717197 DOI: 10.1371/journal.pcbi.1012664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration. Epithelial (MCF10A) cell clusters adhered to soft substrates with aligned collagen fibers (AF) migrate faster with much lesser traction forces, compared to random fibers (RF). Fiber alignment causes higher motility waves and transmission of normal stresses deeper into cell monolayer while minimizing shear stresses and increased cell-division based fluidization. By contrast, fiber randomization induces cellular jamming due to breakage in motility waves, disrupted transmission of normal stresses, and heightened shear driven flow. Using a novel motor-clutch model, we explain that such 'force-effective' fast migration phenotype occurs due to rapid stabilization of contractile forces at the migrating front, enabled by higher frictional forces arising from simultaneous compressive loading of parallel fiber-substrate connections. We also model 'haptotaxis' to show that increasing ligand connectivity (but not continuity) increases migration efficiency. According to our model, increased rate of front stabilization via higher resistance to substrate deformation is sufficient to capture 'durotaxis'. Thus, our findings reveal a new paradigm wherein the rate of leading-edge stabilization determines the efficiency of supracellular collective cell migration.
Collapse
Affiliation(s)
- Amrit Bagchi
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Jialiang Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Sakai K, Hayashi T, Sakai Y, Mada J, Tonami K, Uchijima Y, Kurihara H, Tokihiro T. A three-dimensional model with two-body interactions for endothelial cells in angiogenesis. Sci Rep 2023; 13:20549. [PMID: 37996513 PMCID: PMC10667370 DOI: 10.1038/s41598-023-47911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
We introduce a three-dimensional mathematical model for the dynamics of vascular endothelial cells during sprouting angiogenesis. Angiogenesis is the biological process by which new blood vessels form from existing ones. It has been the subject of numerous theoretical models. These models have successfully replicated various aspects of angiogenesis. Recent studies using particle-based models have highlighted the significant influence of cell shape on network formation, with elongated cells contributing to the formation of branching structures. While most mathematical models are two-dimensional, we aim to investigate whether ellipsoids also form branch-like structures and how their shape affects the pattern. In our model, the shape of a vascular endothelial cell is represented as a spheroid, and a discrete dynamical system is constructed based on the simple assumption of two-body interactions. Numerical simulations demonstrate that our model reproduces the patterns of elongation and branching observed in the early stages of angiogenesis. We show that the pattern formation of the cell population is strongly dependent on the cell shape. Finally, we demonstrate that our current mathematical model reproduces the cell behaviours, specifically cell-mixing, observed in sprouts.
Collapse
Affiliation(s)
- Kazuma Sakai
- Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan
| | - Tatsuya Hayashi
- Faculty of Science and Engineering, Yamato University, 2-5-1, Katayama-cho, Suita, Osaka, 564-0082, Japan.
- Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Yusuke Sakai
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Mada
- College of Industrial Technology, Nihon University, 1-2-1, Izumi-cho, Narashino, Chiba, 275-8575, Japan
| | - Kazuo Tonami
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunobu Uchijima
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kurihara
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Tokihiro
- Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan.
- Faculty of Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo, 135-8181, Japan.
| |
Collapse
|
4
|
CircANKRD12 Is Induced in Endothelial Cell Response to Oxidative Stress. Cells 2022; 11:cells11223546. [PMID: 36428974 PMCID: PMC9688326 DOI: 10.3390/cells11223546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Redox imbalance of the endothelial cells (ECs) plays a causative role in a variety of cardiovascular diseases. In order to better understand the molecular mechanisms of the endothelial response to oxidative stress, the involvement of circular RNAs (circRNAs) was investigated. CircRNAs are RNA species generated by a "back-splicing" event, which is the covalent linking of the 3'- and 5'-ends of exons. Bioinformatics analysis of the transcriptomic landscape of human ECs exposed to H2O2 allowed us to identify a subset of highly expressed circRNAs compared to their linear RNA counterparts, suggesting a potential biological relevance. Specifically, circular Ankyrin Repeat Domain 12 (circANKRD12), derived from the junction of exon 2 and exon 8 of the ANKRD12 gene (hsa_circ_0000826), was significantly induced in H2O2-treated ECs. Conversely, the linear RNA isoform of ANKRD12 was not modulated. An increased circular-to-linear ratio of ANKRD12 was also observed in cultured ECs exposed to hypoxia and in skeletal muscle biopsies of patients affected by critical limb ischemia (CLI), two conditions associated with redox imbalance and oxidative stress. The functional relevance of circANKRD12 was shown by the inhibition of EC formation of capillary-like structures upon silencing of the circular but not of the linear isoform of ANKRD12. Bioinformatics analysis of the circANKRD12-miRNA-mRNA regulatory network in H2O2-treated ECs identified the enrichment of the p53 and Foxo signaling pathways, both crucial in the cellular response to redox imbalance. In keeping with the antiproliferative action of the p53 pathway, circANKRD12 silencing inhibited EC proliferation. In conclusion, this study indicates circANKRD12 as an important player in ECs exposed to oxidative stress.
Collapse
|
5
|
Francis EA, Heinrich V. Integrative experimental/computational approach establishes active cellular protrusion as the primary driving force of phagocytic spreading by immune cells. PLoS Comput Biol 2022; 18:e1009937. [PMID: 36026476 PMCID: PMC9455874 DOI: 10.1371/journal.pcbi.1009937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/08/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamic interplay between cell adhesion and protrusion is a critical determinant of many forms of cell motility. When modeling cell spreading on adhesive surfaces, traditional mathematical treatments often consider passive cell adhesion as the primary, if not exclusive, mechanistic driving force of this cellular motion. To better assess the contribution of active cytoskeletal protrusion to immune-cell spreading during phagocytosis, we here develop a computational framework that allows us to optionally investigate both purely adhesive spreading ("Brownian zipper hypothesis") as well as protrusion-dominated spreading ("protrusive zipper hypothesis"). We model the cell as an axisymmetric body of highly viscous fluid surrounded by a cortex with uniform surface tension and incorporate as potential driving forces of cell spreading an attractive stress due to receptor-ligand binding and an outward normal stress representing cytoskeletal protrusion, both acting on the cell boundary. We leverage various model predictions against the results of a directly related experimental companion study of human neutrophil phagocytic spreading on substrates coated with different densities of antibodies. We find that the concept of adhesion-driven spreading is incompatible with experimental results such as the independence of the cell-spreading speed on the density of immobilized antibodies. In contrast, the protrusive zipper model agrees well with experimental findings and, when adapted to simulate cell spreading on discrete adhesion sites, it also reproduces the observed positive correlation between antibody density and maximum cell-substrate contact area. Together, our integrative experimental/computational approach shows that phagocytic spreading is driven by cellular protrusion, and that the extent of spreading is limited by the density of adhesion sites.
Collapse
Affiliation(s)
- Emmet A. Francis
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
6
|
Kim KA, Vellampatti S, Kim BC. Characterization of Integrin Molecular Tension of Human Breast Cancer Cells on Anisotropic Nanopatterns. Front Mol Biosci 2022; 9:825970. [PMID: 35755806 PMCID: PMC9218603 DOI: 10.3389/fmolb.2022.825970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Physical interactions between cells and micro/nanometer-sized architecture presented in an extracellular matrix (ECM) environment significantly influence cell adhesion and morphology, often facilitating the incidence of diseases, such as cancer invasion and metastasis. Sensing and responding to the topographical cues are deeply associated with a physical interplay between integrins, ligands, and mechanical force transmission, ultimately determining diverse cell behavior. Thus, how the tension applied to the integrin-ligand bonds controls cells' response to the topographical cues needs to be elucidated through quantitative analysis. Here, in this brief research report, we reported a novel platform, termed "topo-tension gauge tether (TGT)," to visualize single-molecule force applied to the integrin-ligand on the aligned anisotropic nanopatterns. Using the topo-TGT assay, first, topography-induced adhesion and morphology of cancerous and normal cells were compared with the pre-defined peak integrin tension. Next, spatial integrin tensions underneath cells were identified using reconstructed integrin tension maps. As a result, we characterized each cell's capability to comply with nanotopographies and the magnitude of the spatial integrin tension. Altogether, the quantitative information on integrin tension will be a valuable basis for understanding the biophysical mechanisms underlying the force balance influencing adhesion to the topographical cues.
Collapse
Affiliation(s)
- Kyung Ah Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Srivithya Vellampatti
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Byoung Choul Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
7
|
Pahapale GJ, Tao J, Nikolic M, Gao S, Scarcelli G, Sun SX, Romer LH, Gracias DH. Directing Multicellular Organization by Varying the Aspect Ratio of Soft Hydrogel Microwells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104649. [PMID: 35434926 PMCID: PMC9189654 DOI: 10.1002/advs.202104649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Indexed: 06/03/2023]
Abstract
Multicellular organization with precise spatial definition is essential to various biological processes, including morphogenesis, development, and healing in vascular and other tissues. Gradients and patterns of chemoattractants are well-described guides of multicellular organization, but the influences of 3D geometry of soft hydrogels are less well defined. Here, the discovery of a new mode of endothelial cell self-organization guided by combinatorial effects of stiffness and geometry, independent of protein or chemical patterning, is described. Endothelial cells in 2 kPa microwells are found to be ≈30 times more likely to migrate to the edge to organize in ring-like patterns than in stiff 35 kPa microwells. This organization is independent of curvature and significantly more pronounced in 2 kPa microwells with aspect ratio (perimeter/depth) < 25. Physical factors of cells and substrates that drive this behavior are systematically investigated and a mathematical model that explains the organization by balancing the dynamic interaction between tangential cytoskeletal tension, cell-cell, and cell-substrate adhesion is presented. These findings demonstrate the importance of combinatorial effects of geometry and stiffness in complex cellular organization that can be leveraged to facilitate the engineering of bionics and integrated model organoid systems with customized nutrient vascular networks.
Collapse
Affiliation(s)
- Gayatri J. Pahapale
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiaxiang Tao
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Milos Nikolic
- Maryland Biophysics ProgramInstitute for Physical Science and TechnologyUniversity of MarylandCollege ParkMD20742USA
| | - Sammy Gao
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Giuliano Scarcelli
- Maryland Biophysics ProgramInstitute for Physical Science and Technology and Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Sean X. Sun
- Department of Mechanical EngineeringCell Biologyand Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMD21218USA
| | - Lewis H. Romer
- Department of Cell BiologyAnesthesiology and Critical Care MedicineBiomedical EngineeringPediatricsand Center for Cell DynamicsJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - David H. Gracias
- Department of Chemical and Biomolecular EngineeringMaterials Science and EngineeringChemistry and Laboratory for Computational Sensing and Robotics (LCSR)Johns Hopkins UniversityBaltimoreMD21218USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMD21205USA
| |
Collapse
|
8
|
Abstract
We propose a model for glioma patterns in a microlocal tumor environment under the influence of acidity, angiogenesis, and tissue anisotropy. The bottom-up model deduction eventually leads to a system of reaction–diffusion–taxis equations for glioma and endothelial cell population densities, of which the former infers flux limitation both in the self-diffusion and taxis terms. The model extends a recently introduced (Kumar, Li and Surulescu, 2020) description of glioma pseudopalisade formation with the aim of studying the effect of hypoxia-induced tumor vascularization on the establishment and maintenance of these histological patterns which are typical for high-grade brain cancer. Numerical simulations of the population level dynamics are performed to investigate several model scenarios containing this and further effects.
Collapse
|
9
|
Nakano T, Okaie Y, Kinugasa Y, Koujin T, Suda T, Hiraoka Y, Haraguchi T. Roles of Remote and Contact Forces in Epithelial Cell Structure Formation. Biophys J 2020; 118:1466-1478. [PMID: 32097624 PMCID: PMC7091513 DOI: 10.1016/j.bpj.2020.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cells collectively form a large-scale structure for their growth. In this article, we report that HeLa cells, epithelial-like human cervical cancer cells, aggressively migrate on Matrigel and form a large-scale structure in a cell-density-dependent manner. To explain the experimental results, we develop a simple model in which cells interact and migrate using the two fundamentally different types of force, remote and contact forces, and show how cells form a large-scale structure. We demonstrate that the simple model reproduces experimental observations, suggesting that the remote and contact forces considered in this work play a major role in large-scale structure formation of HeLa cells. This article provides important evidence that cancer cells form a large-scale structure and develops an understanding into the poorly understood mechanisms of their structure formation.
Collapse
Affiliation(s)
- Tadashi Nakano
- Institute for Datability Science, Osaka University, Suita, Japan.
| | - Yutaka Okaie
- Institute for Datability Science, Osaka University, Suita, Japan
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | | | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
10
|
Gupta S, Gangenahalli G. Analysis of molecular switch between leukocyte and substrate adhesion in bone marrow endothelial cells. Life Sci 2019; 238:116981. [DOI: 10.1016/j.lfs.2019.116981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023]
|
11
|
Mehes E, Barath M, Gulyas M, Bugyik E, Geiszt M, Szoor A, Lanyi A, Czirok A. Enhanced endothelial motility and multicellular sprouting is mediated by the scaffold protein TKS4. Sci Rep 2019; 9:14363. [PMID: 31591456 PMCID: PMC6779758 DOI: 10.1038/s41598-019-50915-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/17/2019] [Indexed: 01/15/2023] Open
Abstract
Endothelial cell motility has fundamental role in vasculogenesis and angiogenesis during developmental or pathological processes. Tks4 is a scaffold protein known to organize the cytoskeleton of lamellipodia and podosomes, and thus modulating cell motility and invasion. In particular, Tks4 is required for the localization and activity of membrane type 1-matrix metalloproteinase, a key factor for extracellular matrix (ECM) cleavage during cell migration. While its role in transformed cells is well established, little is known about the function of Tks4 under physiological conditions. In this study we examined the impact of Tks4 gene silencing on the functional activity of primary human umbilical vein endothelial cells (HUVEC) and used time-lapse videomicrosopy and quantitative image analysis to characterize cell motility phenotypes in culture. We demonstrate that the absence of Tks4 in endothelial cells leads to impaired ECM cleavage and decreased motility within a 3-dimensional ECM environment. Furthermore, absence of Tks4 also decreases the ability of HUVEC cells to form multicellular sprouts, a key requirement for angiogenesis. To establish the involvement of Tks4 in vascular development in vivo, we show that loss of Tks4 leads sparser vasculature in the fetal chorion in the Tks4-deficient ‘nee’ mouse strain.
Collapse
Affiliation(s)
- Elod Mehes
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Monika Barath
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marton Gulyas
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Miklos Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Arpad Szoor
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary. .,Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Szabó A, Theveneau E, Turan M, Mayor R. Neural crest streaming as an emergent property of tissue interactions during morphogenesis. PLoS Comput Biol 2019; 15:e1007002. [PMID: 31009457 PMCID: PMC6497294 DOI: 10.1371/journal.pcbi.1007002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/02/2019] [Accepted: 04/03/2019] [Indexed: 12/05/2022] Open
Abstract
A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.
Collapse
Affiliation(s)
- András Szabó
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Theveneau
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Melissa Turan
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Roberto Mayor
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Yu Y, Situ Q, Jia W, Li J, Wu Q, Lei J. Data driven mathematical modeling reveals the dynamic mechanism of MSC-induced neovascularization. FASEB J 2018; 33:3496-3509. [PMID: 30517036 DOI: 10.1096/fj.201801652r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coculture of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) in vitro leads to the formation of a capillary-like reticular structure by ECs, which has great potential as a better substitute for artificial blood vessels in terms of stability and functionality. To investigate the mechanisms of the early neovascularization induced by MSCs, we analyzed the kinematic features of the motion of ECs and concluded that the dynamic interaction between cells and the extracellular matrix would reveal the capillary-like structure formation. Based on this hypothesis, we proposed a mathematical model to simulate the vascular-like migration pattern of ECs in silico, which was confirmed by in vitro studies. These in vitro studies validated that the dynamic secretion and degradation of collagen I is the critical factor for capillary structure formation. The model proposed based on cell tracking, single cell sequencing, and mathematical simulation provides a better understanding of the neovascularization process induced by MSCs and a possible simple explanation guiding this important cellular behavior.-Yu, Y., Situ, Q., Jia, W., Li, J., Wu, Q., Lei, J. Data driven mathematical modeling reveals the dynamic mechanism of MSC-induced neovascularization.
Collapse
Affiliation(s)
- Yingting Yu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Qiaojun Situ
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China
| | - Wangyue Jia
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Junxiang Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Jinzhi Lei
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Lakatos D, Somfai E, Méhes E, Czirók A. Soluble VEGFR1 signaling guides vascular patterns into dense branching morphologies. J Theor Biol 2018; 456:261-278. [PMID: 30086288 PMCID: PMC6292526 DOI: 10.1016/j.jtbi.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
Abstract
Vascular patterning is a key process during development and disease. The diffusive decoy receptor sVEGFR1 (sFlt1) is a known regulator of endothelial cell behavior, yet the mechanism by which it controls vascular structure is little understood. We propose computational models to shed light on how vascular patterning is guided by self-organized gradients of the VEGF/sVEGFR1 factors. We demonstrate that a diffusive inhibitor can generate structures with a dense branching morphology in models where the activator elicits directed growth. Inadequate presence of the inhibitor leads to compact growth, while excessive production of the inhibitor blocks expansion and stabilizes existing structures. Model predictions were compared with time-resolved experimental data obtained from endothelial sprout kinetics in fibrin gels. In the presence of inhibitory antibodies against VEGFR1 vascular sprout density increases while the speed of sprout expansion remains unchanged. Thus, the rate of secretion and stability of extracellular sVEGFR1 can modulate vascular sprout density.
Collapse
Affiliation(s)
- Dóra Lakatos
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
15
|
Weinstein N, Mendoza L, Gitler I, Klapp J. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis. Front Physiol 2017; 8:960. [PMID: 29230182 PMCID: PMC5711888 DOI: 10.3389/fphys.2017.00960] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs) covered by one or more layers of mural cells (smooth muscle cells or pericytes). We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.
Collapse
Affiliation(s)
- Nathan Weinstein
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
| | - Luis Mendoza
- CompBioLab, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isidoro Gitler
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Klapp
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Mexico City, Mexico
| |
Collapse
|
16
|
Ray A, Lee O, Win Z, Edwards RM, Alford PW, Kim DH, Provenzano PP. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat Commun 2017; 8:14923. [PMID: 28401884 PMCID: PMC5394287 DOI: 10.1038/ncomms14923] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/11/2017] [Indexed: 12/18/2022] Open
Abstract
Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously 'sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell-substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell-substratum and cell-cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA
| | - Oscar Lee
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Zaw Win
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Rachel M Edwards
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Boas SEM, Merks RMH. Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. BMC SYSTEMS BIOLOGY 2015; 9:86. [PMID: 26589386 PMCID: PMC4654812 DOI: 10.1186/s12918-015-0230-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND During angiogenesis, the formation of new blood vessels from existing ones, endothelial cells differentiate into tip and stalk cells, after which one tip cell leads the sprout. More recently, this picture has changed. It has become clear that endothelial cells compete for the tip position during angiogenesis: a phenomenon named tip cell overtaking. The biological function of tip cell overtaking is not yet known. From experimental observations, it is unclear to what extent tip cell overtaking is a side effect of sprouting or to what extent it is regulated through a VEGF-Dll4-Notch signaling network and thus might have a biological function. To address this question, we studied tip cell overtaking in computational models of angiogenic sprouting in absence and in presence of VEGF-Dll4-Notch signaling. RESULTS We looked for tip cell overtaking in two existing Cellular Potts models of angiogenesis. In these simulation models angiogenic sprouting-like behavior emerges from a small set of plausible cell behaviors. In the first model, cells aggregate through contact-inhibited chemotaxis. In the second model the endothelial cells assume an elongated shape and aggregate through (non-inhibited) chemotaxis. In both these sprouting models the endothelial cells spontaneously migrate forwards and backwards within sprouts, suggesting that tip cell overtaking might occur as a side effect of sprouting. In accordance with other experimental observations, in our simulations the cells' tendency to occupy the tip position can be regulated when two cell lines with different levels of Vegfr2 expression are contributing to sprouting (mosaic sprouting assay), where cell behavior is regulated by a simple VEGF-Dll4-Notch signaling network. CONCLUSIONS Our modeling results suggest that tip cell overtaking can occur spontaneously due to the stochastic motion of cells during sprouting. Thus, tip cell overtaking and sprouting dynamics may be interdependent and should be studied and interpreted in combination. VEGF-Dll4-Notch can regulate the ability of cells to occupy the tip cell position in our simulations. We propose that the function of VEGF-Dll4-Notch signaling might not be to regulate which cell ends up at the tip, but to assure that the cell that randomly ends up at the tip position acquires the tip cell phenotype.
Collapse
Affiliation(s)
- Sonja E M Boas
- Life Sciences, Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, The Netherlands.
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands.
| | - Roeland M H Merks
- Life Sciences, Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, The Netherlands.
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands.
| |
Collapse
|
18
|
Daub JT, Merks RMH. Cell-based computational modeling of vascular morphogenesis using Tissue Simulation Toolkit. Methods Mol Biol 2015; 1214:67-127. [PMID: 25468600 DOI: 10.1007/978-1-4939-1462-3_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Collapse
Affiliation(s)
- Josephine T Daub
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
19
|
Abstract
Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems.
Collapse
Affiliation(s)
- Katie Bentley
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero MA, Miura T. Dynamics of VEGF matrix-retention in vascular network patterning. Phys Biol 2013; 10:066007. [DOI: 10.1088/1478-3975/10/6/066007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|