1
|
Velázquez R, Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Hernández LM, Ramírez M. Genetic Improvement of Torulaspora delbrueckii for Wine Fermentation: Eliminating Recessive Growth-Retarding Alleles and Obtaining New Mutants Resistant to SO 2, Ethanol, and High CO 2 Pressure. Microorganisms 2020; 8:E1372. [PMID: 32906752 PMCID: PMC7564342 DOI: 10.3390/microorganisms8091372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022] Open
Abstract
The use of Torulaspora delbrueckii has been repeatedly proposed to improve a wine's organoleptic quality. This yeast has lower efficiency in completing wine fermentation than Saccharomyces cerevisiae since it has less fermentation capability and greater sensitivity to SO2, ethanol, and CO2 pressure. Therefore, the completion of fermentation is not guaranteed when must or wine is single-inoculated with T. delbrueckii. To solve this problem, new strains of T. delbrueckii with enhanced resistance to winemaking conditions were obtained. A genetic study of four wine T. delbrueckii strains was carried out. Spore clones free of possible recessive growth-retarding alleles were obtained from these yeasts. These spore clones were used to successively isolate mutants resistant to SO2, then those resistant to ethanol, and finally those resistant to high CO2 pressure. Most of these mutants showed better capability for base wine fermentation than the parental strain, and some of them approached the fermentation capability of S. cerevisiae. The genetic stability of the new mutants was good enough to be used in industrial-level production in commercial wineries. Moreover, their ability to ferment sparkling wine could be further improved by the continuous addition of oxygen in the culture adaptation stage prior to base wine inoculation.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - María L. Álvarez
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Luis M. Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| |
Collapse
|
2
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
3
|
Adamczyk J, Deregowska A, Potocki L, Kuna E, Kaplan J, Pabian S, Kwiatkowska A, Lewinska A, Wnuk M. Relationships between rDNA, Nop1 and Sir complex in biotechnologically relevant distillery yeasts. Arch Microbiol 2016; 198:715-23. [PMID: 27329282 PMCID: PMC4969353 DOI: 10.1007/s00203-016-1258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
Abstract
Distillery yeasts are poorly characterized physiological group among the Saccharomyces sensu stricto complex. As industrial yeasts are under constant environmental stress during fermentation processes and the nucleolus is a stress sensor, in the present study, nucleolus-related parameters were evaluated in 22 commercially available distillery yeast strains. Distillery yeasts were found to be a heterogeneous group with a variable content and length of rDNA and degree of nucleolus fragmentation. The levels of rDNA were negatively correlated with Nop1 (r = -0.59, p = 0.0038). Moreover, the protein levels of Sir transcriptional silencing complex and longevity regulators, namely Sir1, Sir2, Sir3 and Fob1, were studied and negative correlations between Sir2 and Nop1 (r = -0.45, p = 0.0332), and between Sir2 and Fob1 (r = -0.49, p = 0.0211) were revealed. In general, S. paradoxus group of distillery yeasts with higher rDNA pools and Sir2 level than S. bayanus group was found to be more tolerant to fermentation-associated stress stimuli, namely mild cold/heat stresses and KCl treatment. We postulate that rDNA state may be considered as a novel factor that may modulate a biotechnological process.
Collapse
Affiliation(s)
- Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Jakub Kaplan
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Sylwia Pabian
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | | | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland.
| |
Collapse
|
4
|
Deregowska A, Adamczyk J, Kwiatkowska A, Gurgul A, Skoneczny M, Skoneczna A, Szmatola T, Jasielczuk I, Magda M, Rawska E, Pabian S, Panek A, Kaplan J, Lewinska A, Wnuk M. Shifts in rDNA levels act as a genome buffer promoting chromosome homeostasis. Cell Cycle 2016; 14:3475-87. [PMID: 26566866 DOI: 10.1080/15384101.2015.1093705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The nucleolus is considered to be a stress sensor and rDNA-based regulation of cellular senescence and longevity has been proposed. However, the role of rDNA in the maintenance of genome integrity has not been investigated in detail. Using genomically diverse industrial yeasts as a model and array-based comparative genomic hybridization (aCGH), we show that chromosome level may be balanced during passages and as a response to alcohol stress that may be associated with changes in rDNA pools. Generation- and ethanol-mediated changes in genes responsible for protein and DNA/RNA metabolism were revealed using next-generation sequencing. Links between redox homeostasis, DNA stability, and telomere and nucleolus states were also established. These results suggest that yeast genome is dynamic and chromosome homeostasis may be controlled by rDNA.
Collapse
Affiliation(s)
- Anna Deregowska
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | - Jagoda Adamczyk
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | | | - Artur Gurgul
- b Department of Genomics and Molecular Biology of Animals ; Laboratory of Genomics; National Research Institute of Animal Production ; Cracow , Poland
| | - Marek Skoneczny
- c Department of Genetics ; Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland
| | - Adrianna Skoneczna
- d Laboratory of Mutagenesis and DNA Repair; Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland
| | - Tomasz Szmatola
- b Department of Genomics and Molecular Biology of Animals ; Laboratory of Genomics; National Research Institute of Animal Production ; Cracow , Poland
| | - Igor Jasielczuk
- b Department of Genomics and Molecular Biology of Animals ; Laboratory of Genomics; National Research Institute of Animal Production ; Cracow , Poland
| | - Michal Magda
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | - Ewa Rawska
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | - Sylwia Pabian
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | - Anita Panek
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | - Jakub Kaplan
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| | - Anna Lewinska
- e Department of Biochemistry and Cell Biology ; University of Rzeszow; Rzeszow , Poland
| | - Maciej Wnuk
- a Department of Genetics ; University of Rzeszow ; Rzeszow , Poland
| |
Collapse
|
5
|
Rivero D, Berná L, Stefanini I, Baruffini E, Bergerat A, Csikász-Nagy A, De Filippo C, Cavalieri D. Hsp12p and PAU
genes are involved in ecological interactions between natural yeast strains. Environ Microbiol 2015; 17:3069-81. [DOI: 10.1111/1462-2920.12950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Damaríz Rivero
- Department of Neurosciences, Psychology, Drug Research and Child Health; University of Florence; Florence Italy
| | - Luisa Berná
- Molecular Biology Unit; Institut Pasteur; Montevideo Uruguay
| | - Irene Stefanini
- Centre for Research and Innovation; Fondazione Edmund Mach; San Michele all'Adige Trento Italy
| | | | - Agnes Bergerat
- Department of Pathology; Boston University School of Medicine; Boston USA
| | - Attila Csikász-Nagy
- Centre for Research and Innovation; Fondazione Edmund Mach; San Michele all'Adige Trento Italy
| | - Carlotta De Filippo
- Centre for Research and Innovation; Fondazione Edmund Mach; San Michele all'Adige Trento Italy
| | - Duccio Cavalieri
- Department of Neurosciences, Psychology, Drug Research and Child Health; University of Florence; Florence Italy
| |
Collapse
|
6
|
Wnuk M, Panek A, Golec E, Magda M, Deregowska A, Adamczyk J, Lewinska A. Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH). J Biotechnol 2015; 210:52-6. [PMID: 26116136 DOI: 10.1016/j.jbiotec.2015.06.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
The genetic differences and changes in genomic stability may affect fermentation processes involving baker's, brewer's and wine yeast strains. Thus, it seems worthwhile to monitor the changes in genomic DNA copy number of industrial strains. In the present study, we developed an in situ comparative genomic hybridization (CGH) to investigate the ploidy and genetic differences between selected industrial yeast strains. The CGH-based system was validated using the laboratory Saccharomyces cerevisiae yeast strains (haploid BY4741 and diploid BY4743). DNA isolated from BY4743 cells was considered a reference DNA. The ploidy and DNA gains and losses of baker's, brewer's and wine strains were revealed. Taken together, the in situ CGH was shown a helpful molecular tool to identify genomic differences between yeast industrial strains. Moreover, the in situ CGH-based system may be used at the single-cell level of analysis to supplement array-based techniques and high-throughput analyses at the population scale.
Collapse
Affiliation(s)
- Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland.
| | - Anita Panek
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Ewelina Golec
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Michal Magda
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Poland
| |
Collapse
|
7
|
Abstract
The availability of the sequence of the Saccharomyces genome in combination with the development of chemical analytical technologies with dynamic ranges sensitive enough to detect volatile aromatic compounds has generated a renewed interest in defining the role of yeast in the generation of wine aroma and flavor. Genetic differences among wine strains are well documented and aroma profiles also appear to vary, implying that specific allelic alterations may exist and impact the production of compounds associated with flavor. Partial or complete sequencing data on several wine strains are available and reveal underlying genetic differences across strains in key genes implicated in flavor formation. This review discusses the current understanding of the roles of Saccharomyces in wine flavor with an emphasis on positive contributions to flavor and highlights the discoveries of the underlying enzymatic and metabolic mechanisms responsible for the yeast contribution to wine quality.
Collapse
Affiliation(s)
- Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
8
|
Noise-driven heterogeneity in the rate of genetic-variant generation as a basis for evolvability. Genetics 2010; 185:395-404. [PMID: 20606014 DOI: 10.1534/genetics.110.118190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular biologists have long searched for molecular mechanisms responsible for tuning the rate of genetic-variant generation (RGVG) in fluctuating environments. In spite of several bacterial examples, no regulated variation in the RGVG has been identified in eukaryotic systems. Based notably on the example of industrial and pathogenic yeasts, this article proposes a nonregulated molecular evolutionary mechanism for the appearance of the transient increase of the RGVG in eukaryotic cell populations facing challenging environments. The stochastic nature of gene expression allows a model in which the RGVG in the population can be rapidly tuned as a result of a simple Darwinian process acting on noise-driven heterogeneity in the RGVG from cell to cell. The high flexibility conferred through this model could resolve paradoxical situations, especially concerning the mutator phenotype in cancer cells.
Collapse
|
9
|
Ambrona J, Ramírez M. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation. Appl Environ Microbiol 2007; 73:2486-90. [PMID: 17322328 PMCID: PMC1855609 DOI: 10.1128/aem.02431-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 02/13/2007] [Indexed: 11/20/2022] Open
Abstract
Genetic instability and genome renewal may cause loss of heterozygosity (LOH) in homothallic wine yeasts (Saccharomyces cerevisiae), leading to the elimination of the recessive lethal or deleterious alleles that decrease yeast fitness. LOH was not detected in genetically stable wine yeasts during must fermentation. However, after sporulation, the heterozygosity of the new yeast population decreased during must fermentation. The frequency of mating between just-germinated haploid cells from different tetrads was very low, and the mating of haploid cells from the same ascus was favored because of the physical proximity. Also, mating restriction between haploid cells from the same ascus was found, leading to a very low frequency of self spore clone mating. This mating restriction slowed down the LOH process of the yeast population, maintaining the heterozygote frequency higher than would be expected assuming a fully random mating of the haploid yeasts or according to the Mortimer genome renewal proposal. The observed LOH occurs because of the linkage of the locus MAT to the chromosome III centromere, without the necessity for self spore clone mating or the high frequency of gene conversion and rapid asymmetric LOH observed in genetically unstable yeasts. This phenomenon is enough in itself to explain the high level of homozygosis found in natural populations of wine yeasts. The LOH process for centromere-linked markers would be slower than that for the nonlinked markers, because the linkage decreases the frequency of newly originated heterozygous yeasts after each round of sporulation and mating. This phenomenon is interesting in yeast evolution and may cause important sudden phenotype changes in genetically stable wine yeasts.
Collapse
Affiliation(s)
- Jesús Ambrona
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
10
|
Bisson LF, Karpel JE, Ramakrishnan V, Joseph L. Functional genomics of wine yeast Saccharomyces cerevisiae. ADVANCES IN FOOD AND NUTRITION RESEARCH 2007; 53:65-121. [PMID: 17900497 DOI: 10.1016/s1043-4526(07)53003-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The application of genomic technologies to the analysis of wine strains of Saccharomyces cerevisiae has greatly enhanced our understanding of both native and laboratory strains of this important model eukaryote. Not only are differences in transcript, protein, and metabolite profiles being uncovered, but the heritable basis of these differences is also being elucidated. Although some challenges remain in the application of functional genomic technologies to commercial and native strains of S. cerevisiae, recent improvements, particularly in data analysis, have greatly extended the utility of these tools. Comparative analysis of laboratory and wine isolates is refining our understanding of the mechanisms of genome evolution. Genomic analysis of Saccharomyces in native environments is providing evidence of gene function to previously uncharacterized open reading frames and delineating the physiological parameters of ecological niche specialization and stress adaptation. The wealth of information being generated will soon be utilized to construct commercial stains with more desirable phenotypes, traits that will be designed to be genetically stable under commercial production conditions.
Collapse
Affiliation(s)
- Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
11
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|