1
|
Mitrikeski PT. Unilateral ends-out gene targeting increases mistargeting through supporting extensive single-strand assimilation. Yeast 2023; 40:565-577. [PMID: 37807643 DOI: 10.1002/yea.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ends-out gene targeting enables the swapping of endogenous alleles with exogenous ones through homologous recombination which bears great implications both fundamental and applicable. To address the recombination mechanism(s) behind it, an experimental system was designed to distinguish between a possible (but rarely active) unilateral and the expected bilateral targeting in the yeast Saccharomyces cerevisiae in which the proportions of the two alternative genetic outcomes are conceived to mirror the probabilities of the two scenarios. The quantitative analysis showed that the bilateral targeting was expectedly predominant. However, an analogous comparative analysis on a different experimental set suggested a prevalence of unilateral targeting unveiling an uncertainty whether the extensively resected targeting modules only mimic unilateral invasion. Based on this, a comprehensive qualitative analysis was conducted revealing a single basic ends-out gene targeting mechanism composed of two intertwined pathways differing in the way how the homologous invasion is initiated and/or the production of the intermediates is conducted. This study suggests that bilateral targeting lowers mistargeting plausibly by limiting strand assimilation, unlike unilateral targeting which may initiate extensive strand assimilation producing intermediates capable of supporting multiple genetic outcomes which leads to mistargeting. Some of these outcomes can also be produced by mimicking unilateral invasion.
Collapse
Affiliation(s)
- Petar Tomev Mitrikeski
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Faculty of Philosophy and Religious Studies, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Insertion orientation within the cassette affects gene-targeting success during ends-out recombination in the yeast Saccharomyces cerevisiae. Curr Genet 2022; 68:551-564. [DOI: 10.1007/s00294-022-01246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
|
3
|
Svetec Miklenić M, Gatalica N, Matanović A, Žunar B, Štafa A, Lisnić B, Svetec IK. Size-dependent antirecombinogenic effect of short spacers on palindrome recombinogenicity. DNA Repair (Amst) 2020; 90:102848. [PMID: 32388488 DOI: 10.1016/j.dnarep.2020.102848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/01/2023]
Abstract
Palindromic sequences in DNA can instigate genetic recombination and genome instability, which can result in devastating conditions such as the Emmanuel syndrome. Palindrome recombinogenicity increases with its size and sequence similarity between palindrome arms, while quasipalindromes with long spacers are less recombinogenic. However, the minimal spacer length, which could reduce or abolish palindrome recombinogenicity in the eukaryotic genome, was never determined. Therefore, we constructed a series of palindromes containing spacers of lengths ranging from 0 (perfect palindrome) to 10 bp and tested their recombinogenicity in yeast Saccharomyces cerevisiae. We found that a 7 bp spacer significantly reduces 126 bp palindrome recombinogenicity, while a 10 bp spacer completely stabilizes palindromes up to 150 bp long. Additionally, we showed that palindrome stimulated recombination rate is not dependent on Mus81 and Yen1 endonucleases. We also compared the recombinogenicity of a perfect 126 bp palindrome and a corresponding quasipalindrome consisting of the same palindrome arms with a stabilising 10 bp spacer in sgs1Δ and rad27Δ backgrounds, since both Sgs1 helicase and Rad27 endonuclease are implicated in preventing hairpin formation at palindromic sequences during replication.
Collapse
Affiliation(s)
- Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nikolina Gatalica
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Angela Matanović
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Štafa A, Žunar B, Pranklin A, Zandona A, Svetec-Miklenić M, Šantek B, Svetec IK. Novel Approach in the Construction of
Bioethanol-Producing Saccharomyces cerevisiae Hybrids §. Food Technol Biotechnol 2019; 57:5-16. [PMID: 31316272 PMCID: PMC6600304 DOI: 10.17113/ftb.57.01.19.5685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of Saccharomyces cerevisiae by crossing two natural S. cerevisiae isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus Opuntia megacantha resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of YAP1 gene increased their survival. Furthermore, although originating from the same parental strains, hybrids displayed different fermentative potential in a CO2 production test, suggesting genetic variability that could be used for further selection of desirable traits. Therefore, our results suggest that the construction of intraspecies hybrids coupled with the use of genetic engineering techniques is a promising approach for improvement or development of new biotechnologically relevant strains of S. cerevisiae. Moreover, it was found that the success of gene targeting (gene targeting fidelity) in natural S. cerevisiae isolates (YIIc17_E5α and UWOPS87-2421α) was strikingly lower than in laboratory strains and the most frequent off-targeting event was targeted chromosome duplication.
Collapse
Affiliation(s)
- Anamarija Štafa
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Bojan Žunar
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Andrea Pranklin
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Antonio Zandona
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Marina Svetec-Miklenić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Božidar Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Kačićeva 28, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Stepchenkova EI, Shiriaeva AA, Pavlov YI. Deletion of the DEF1 gene does not confer UV-immutability but frequently leads to self-diploidization in yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 70:49-54. [PMID: 30172224 DOI: 10.1016/j.dnarep.2018.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
In yeast Saccharomyces cerevisiae, the DEF1 gene is responsible for regulation of many cellular processes including ubiquitin-dependent degradation of DNA metabolism proteins. Recently it has been proposed that Def1 promotes degradation of the catalytic subunit of DNA polymerase δ at sites of DNA damage and regulates a switch to specialized polymerases and, as a consequence, DNA-damage induced mutagenesis. The idea was based substantially on the severe defects in induced mutagenesis observed in the def1 mutants. We describe that UV mutability of def1Δ strains is actually only moderately affected, while the virtual absence of UV mutagenesis in many def1Δ clones is caused by a novel phenotype of the def1 mutants, proneness to self-diploidization. Diploids are extremely frequent (90%) after transformation of wild-type haploids with def1::kanMX disruption cassette and are frequent (2.3%) in vegetative haploid def1 cultures. Such diploids look "UV immutable" when assayed for recessive forward mutations but have normal UV mutability when assayed for dominant reverse mutations. The propensity for frequent self-diploidization in def1Δ mutants should be taken into account in studies of the def1Δ effect on mutagenesis. The true haploids with def1Δ mutation are moderately UV sensitive but retain substantial UV mutagenesis for forward mutations: they are fully proficient at lower doses and only partially defective at higher doses of UV. We conclude that Def1 does not play a critical role in damage-induced mutagenesis.
Collapse
Affiliation(s)
- E I Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg, 199034, Russia; Department of Genetics, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - A A Shiriaeva
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia; Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, Saint-Petersburg, 195251, Russia; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Y I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Departments of Microbiology and Pathology, Biochemistry and Molecular Biology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Štafa A, Miklenić MS, Zandona A, Žunar B, Čadež N, Petković H, Svetec IK. In Saccharomyces cerevisiae gene targeting fidelity depends on a transformation method and proportion of the overall length of the transforming and targeted DNA. FEMS Yeast Res 2017. [DOI: 10.1093/femsyr/fox041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Antonio Zandona
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Gnügge R, Rudolf F. Saccharomyces cerevisiaeShuttle vectors. Yeast 2017; 34:205-221. [DOI: 10.1002/yea.3228] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Robert Gnügge
- D-BSSE; ETH Zurich and Swiss Institute of Bioinformatics; Zurich Switzerland
- Life Science Zurich PhD Program on Molecular and Translational Biomedicine; Zurich Switzerland
- Competence Centre for Personalized Medicine; Zurich Switzerland
| | - Fabian Rudolf
- D-BSSE; ETH Zurich and Swiss Institute of Bioinformatics; Zurich Switzerland
| |
Collapse
|
8
|
Štafa A, Miklenić M, Zunar B, Lisnić B, Symington LS, Svetec IK. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting. DNA Repair (Amst) 2014; 22:12-23. [PMID: 25089886 DOI: 10.1016/j.dnarep.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.
Collapse
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Marina Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Bojan Zunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ivan-Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
9
|
Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae. Genetics 2010; 186:775-90. [PMID: 20805555 DOI: 10.1534/genetics.110.120683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chromosome translocations are gross chromosomal rearrangements that have often been associated with cancer development in mammalian cells. The feasibility of drastically reshaping the genome with a single translocation event also gives this molecular event a powerful capacity to drive evolution. Despite these implications and their role in genome instability, very little is known about the molecular mechanisms that promote and accompany these events. Here, at the molecular level, we describe 10 morphologically and physiologically different translocants ensuing from the induction of the same bridge-induced translocation (BIT) event in the budding yeast Saccharomyces cerevisiae. We have demonstrated that, despite their common origin from the integration of the same linear DNA construct, all 10 translocation mutant strains have different phenotypes and the ability to sporulate and regulate gene expression and morphology. We also provide insights into how heterogeneous phenotypic variations originate from the same initial genomic event. Here we show eight different ways in which yeast cells have dealt with a single initial event inducing translocation. Our results are in agreement with the formation of complex rearrangements and abnormal karyotypes described in many leukemia patients, thus confirming the modellistic value of the yeast BIT system for mammalian cells.
Collapse
|
10
|
Ends-in vs. ends-out targeted insertion mutagenesis in Saccharomyces castellii. Curr Genet 2009; 55:339-47. [PMID: 19437021 DOI: 10.1007/s00294-009-0248-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/24/2009] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
Gene replacement (knock-out) is a major tool for the analysis of gene function. However, the efficiency of correct targeting varies between species, and is dependent on the structure of the DNA construct. We analyzed the targeted insertion mutagenesis method in the budding yeast Saccharomyces castellii, phylogenetically positioned after the whole genome duplication event in the Saccharomyces lineage. We compared the targeting efficiency for target DNA constructs in the respective ends-in and ends-out form. For some of the constructs S. castellii showed a similar high degree of homologous recombination as S. cerevisiae. In agreement with S. cerevisiae, a higher targeting efficiency was seen for the diploid strain than for the haploid. Surprisingly, a higher degree of targeting efficiency was seen for ends-out constructs compared to ends-in constructs. This result may have been influenced by the difference in the length of the homologous target sequences used, although long homology regions of 300 bp-1 kb were used in all constructs. Remarkably, very short regions of cohesive heterologous sequences at the ends of the constructs highly stimulated random illegitimate integration, suggesting that the pathway of non-homologous end joining is highly active in S. castellii.
Collapse
|
11
|
Lisnić B, Svetec IK, Stafa A, Zgaga Z. Size-dependent palindrome-induced intrachromosomal recombination in yeast. DNA Repair (Amst) 2009; 8:383-9. [PMID: 19124276 DOI: 10.1016/j.dnarep.2008.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/15/2008] [Accepted: 11/25/2008] [Indexed: 12/11/2022]
Abstract
Palindromic and quasi-palindromic sequences are important DNA motifs found in various cis-acting genetic elements, but are also known to provoke different types of genetic alterations. The instability of such motifs is clearly size-related and depends on their potential to adopt secondary structures known as hairpins and cruciforms. Here we studied the influence of palindrome size on recombination between two directly repeated copies of the yeast CYC1 gene leading to the loss of the intervening sequence ("pop-out" recombination). We show that palindromes inserted either within one copy or between the two copies of the CYC1 gene become recombinogenic only when they attain a certain critical size and we estimate this critical size to be about 70 bp. With the longest palindrome used in this study (150 bp) we observed a more than 20-fold increase in the pop-out recombination. In the sae2/com1 mutant the palindrome-stimulated recombination was completely abolished. Suppression of palindrome recombinogenicity may be crucial for the maintenance of genetic stability in organisms containing a significant number of large palindromes in their genomes, like humans.
Collapse
Affiliation(s)
- Berislav Lisnić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Laboratory of Biology and Microbial Genetics, Pierottijeva 6, Zagreb, Croatia
| | | | | | | |
Collapse
|
12
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|