1
|
Huang S, Benben A, Green R, Cheranda N, Lee G, Joseph B, Keaveney S, Wang Y. Phosphorylation of the Gα protein Gpa2 promotes protein kinase A signaling in yeast. J Biol Chem 2019; 294:18836-18845. [PMID: 31690628 DOI: 10.1074/jbc.ra119.009609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/31/2019] [Indexed: 01/10/2023] Open
Abstract
Heterotrimeric G proteins are important molecular switches that facilitate transmission of a variety of signals from the outside to the inside of cells. G proteins are highly conserved, enabling study of their regulatory mechanisms in model organisms such as the budding yeast Saccharomyces cerevisiae Gpa2 is a yeast Gα protein that functions in the nutrient signaling pathway. Using Phos-tag, a highly specific phosphate binding tag for separating phosphorylated proteins, we found that Gpa2 undergoes phosphorylation and that its level of phosphorylation is markedly increased upon nitrogen starvation. We also observed that phosphorylation of Gpa2 depends on glycogen synthase kinase (GSK). Disrupting GSK activity diminishes Gpa2 phosphorylation levels in vivo, and the purified GSK isoforms Mck1 and Ygk3 are capable of phosphorylating Gpa2 in vitro Functionally, phosphorylation enhanced plasma membrane localization of Gpa2 and promoted nitrogen starvation-induced activation of protein kinase A. Together, the findings of our study reveal a mechanism by which GSK- and nutrient-dependent phosphorylation regulates subcellular localization of Gpa2 and its ability to activate downstream signaling.
Collapse
Affiliation(s)
- Shan Huang
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Alex Benben
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Robert Green
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Nina Cheranda
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Grace Lee
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Benita Joseph
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Shannon Keaveney
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Yuqi Wang
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103.
| |
Collapse
|
2
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
3
|
Qian W, Gang X, Zhang T, Wei L, Yang X, Li Z, Yang Y, Song L, Wang P, Peng J, Cheng D, Xia Q. Protein kinase A-mediated phosphorylation of the Broad-Complex transcription factor in silkworm suppresses its transcriptional activity. J Biol Chem 2017; 292:12460-12470. [PMID: 28584058 PMCID: PMC5535021 DOI: 10.1074/jbc.m117.775130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
The insect-specific transcription factor Broad-Complex (BR-C) is transcriptionally activated by the steroid 20-hydroxyecdysone (20E) and regulates the expression of many target genes involved in insect growth and development. However, although the transcriptional regulation of BR-C proteins has been well studied, how BR-C is regulated at post-transcription and -translation levels is poorly understood. To this end, using liquid chromatography-tandem mass spectrometry analysis, we identified residue Ser-186 as a phosphorylation site of BR-C in silkworm. Site-directed mutagenesis and treatment with specific kinase activators and inhibitors indicated that the Ser-186 residue in silkworm BR-C is phosphorylated by protein kinase A (PKA). Immunostaining assays disclosed that PKA-mediated phosphorylation of silkworm BR-C has no effect on its nuclear import. However, luciferase reporter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation revealed that the PKA phosphorylation event suppresses the transcriptional activation of silkworm BR-C target genes and that this inhibition was caused by repression of BR-C binding to its DNA targets. Of note, both in vitro and ex vivo experiments disclosed that a continuous 20E signal inhibits the PKA-mediated BR-C phosphorylation and also the cAMP/PKA pathway, indicating that 20E's inhibitory effect on PKA-mediated phosphorylation of silkworm BR-C contributes to maintaining BR-C transcriptional activity. In conclusion, our findings indicate that PKA-mediated phosphorylation inhibits silkworm BR-C activity by interfering with its binding to DNA and that 20E signaling relieves PKA-mediated phosphorylation of BR-C, thereby maintaining its transcriptional activity.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaoxu Gang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Xinxin Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Qian W, Gang X, Zhang T, Wei L, Yang X, Li Z, Yang Y, Song L, Wang P, Peng J, Cheng D, Xia Q. Protein kinase A-mediated phosphorylation of the Broad-Complex transcription factor in silkworm suppresses its transcriptional activity. J Biol Chem 2017. [DOI: 10.1.74/jbc.m117.77513010.1074/jbc.m117.775130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Raguz Nakic Z, Seisenbacher G, Posas F, Sauer U. Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2016; 10:104. [PMID: 27846849 PMCID: PMC5109706 DOI: 10.1186/s12918-016-0350-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Background Coordinated through a complex network of kinases and phosphatases, protein phosphorylation regulates essentially all cellular processes in eukaryotes. Recent advances in proteomics enable detection of thousands of phosphorylation sites (phosphosites) in single experiments. However, functionality of the vast majority of these sites remains unclear and we lack suitable approaches to evaluate functional relevance at a pace that matches their detection. Results Here, we assess functionality of 26 phosphosites by introducing phosphodeletion and phosphomimic mutations in 25 metabolic enzymes and regulators from the TOR and HOG signaling pathway in Saccharomyces cerevisiae by phenotypic analysis and untargeted metabolomics. We show that metabolomics largely outperforms growth analysis and recovers 10 out of the 13 previously characterized phosphosites and suggests functionality for several novel sites, including S79 on the TOR regulatory protein Tip41. We analyze metabolic profiles to identify consequences underlying regulatory phosphorylation events and detecting glycerol metabolism to have a so far unknown influence on arginine metabolism via phosphoregulation of the glycerol dehydrogenases. Further, we also find S508 in the MAPKK Pbs2 as a potential link for cross-talking between HOG signaling and the cell wall integrity pathway. Conclusions We demonstrate that metabolic profiles can be exploited for gaining insight into regulatory consequences and biological roles of phosphosites. Altogether, untargeted metabolomics is a fast, sensitive and informative approach appropriate for future large-scale functional analyses of phosphosites. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0350-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland.,PhD Program on Systems Biology, Life Science Zürich, Zürich, Switzerland
| | - Gerhard Seisenbacher
- Cell signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland.
| |
Collapse
|
6
|
Jin X, Starke S, Li Y, Sethupathi S, Kung G, Dodhiawala P, Wang Y. Nitrogen Starvation-induced Phosphorylation of Ras1 Protein and Its Potential Role in Nutrient Signaling and Stress Response. J Biol Chem 2016; 291:16231-9. [PMID: 27261458 DOI: 10.1074/jbc.m115.713206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 12/19/2022] Open
Abstract
Ras1 is a small GTPase in the budding yeast Saccharomyces cerevisiae that regulates nutrient signaling. It has been shown that Ras1 undergoes phosphorylation, but the functional consequences and regulation of Ras1 phosphorylation remain unknown. Here we identify Ser-226 as an important residue for Ras1 phosphorylation, as mutating this residue to an alanine drastically diminishes the level of Ras1 phosphorylation. Notably, phosphorylated Ras1 accumulates as the cells approach the stationary phase of growth. Likewise, subjecting cells to nitrogen starvation also elevates the level of Ras1 phosphorylation. Interestingly, blocking Ras1 phosphorylation diminishes the level of autophagy and also renders the cells more sensitive to heat shock. Together, these data suggest a role of Ras1 phosphorylation in modulating nutrient signaling and stress response.
Collapse
Affiliation(s)
- Xin Jin
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Samuel Starke
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Yang Li
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Sheetal Sethupathi
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - George Kung
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Paarth Dodhiawala
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Yuqi Wang
- From the Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| |
Collapse
|
7
|
Satomura A, Miura N, Kuroda K, Ueda M. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Sci Rep 2016; 6:23157. [PMID: 26984760 DOI: 10.1038/srep23157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/01/2016] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.
Collapse
Affiliation(s)
- Atsushi Satomura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Natsuko Miura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
8
|
Saidi Y, Hearn TJ, Coates JC. Function and evolution of 'green' GSK3/Shaggy-like kinases. TRENDS IN PLANT SCIENCE 2012; 17:39-46. [PMID: 22051150 DOI: 10.1016/j.tplants.2011.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 05/20/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) proteins, also known as SHAGGY-like kinases, have many important cell signalling roles in animals, fungi and amoebae. In particular, GSK3s participate in key developmental signalling pathways and also regulate the cytoskeleton. GSK3-encoding genes are also present in all land plants and in algae and protists, raising questions about possible ancestral functions in eukaryotes. Recent studies have revealed that plant GSK3 proteins are actively implicated in hormonal signalling networks during development as well as in biotic and abiotic stress responses. In this review, we outline the mechanisms of Arabidopsis GSK3 action, summarize GSK3 functions in dicot and monocot flowering plants, and speculate on the possible functions of GSK3s in the earliest-evolving land plants.
Collapse
Affiliation(s)
- Younousse Saidi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
9
|
Shah AN, Cadinu D, Henke RM, Xin X, Dastidar RG, Zhang L. Deletion of a subgroup of ribosome-related genes minimizes hypoxia-induced changes and confers hypoxia tolerance. Physiol Genomics 2011; 43:855-72. [PMID: 21586670 DOI: 10.1152/physiolgenomics.00232.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia is a widely occurring condition experienced by diverse organisms under numerous physiological and disease conditions. To probe the molecular mechanisms underlying hypoxia responses and tolerance, we performed a genome-wide screen to identify mutants with enhanced hypoxia tolerance in the model eukaryote, the yeast Saccharomyces cerevisiae. Yeast provides an excellent model for genomic and proteomic studies of hypoxia. We identified five genes whose deletion significantly enhanced hypoxia tolerance. They are RAI1, NSR1, BUD21, RPL20A, and RSM22, all of which encode functions involved in ribosome biogenesis. Further analysis of the deletion mutants showed that they minimized hypoxia-induced changes in polyribosome profiles and protein synthesis. Strikingly, proteomic analysis by using the iTRAQ profiling technology showed that a substantially fewer number of proteins were changed in response to hypoxia in the deletion mutants, compared with the parent strain. Computational analysis of the iTRAQ data indicated that the activities of a group of regulators were regulated by hypoxia in the wild-type parent cells, but such regulation appeared to be diminished in the deletion strains. These results show that the deletion of one of the genes involved in ribosome biogenesis leads to the reversal of hypoxia-induced changes in gene expression and related regulators. They suggest that modifying ribosomal function is an effective mechanism to minimize hypoxia-induced specific protein changes and to confer hypoxia tolerance. These results may have broad implications in understanding hypoxia responses and tolerance in diverse eukaryotes ranging from yeast to humans.
Collapse
Affiliation(s)
- Ajit N Shah
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rodrigues-Pousada C, Menezes RA, Pimentel C. The Yap family and its role in stress response. Yeast 2010; 27:245-58. [DOI: 10.1002/yea.1752] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
11
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|