1
|
Procópio L. The era of 'omics' technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 2020; 42:341-356. [PMID: 31897850 DOI: 10.1007/s10529-019-02789-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
Abstract
Efforts to elucidate the relationships between microorganisms and metal corrosion were mainly directed to understanding the formation of biofilm structures grown on corroded surfaces. The emergence of high throughput DNA sequencing techniques has helped in the description of microbial species involved directly and indirectly in the corrosion processes of alloys. Coupled with sequencing from environmental samples, other methodologies such as metatranscriptome, metaproteomics and metabolomics have allowed a new horizon to be opened on the understanding of the role of corrosive microbial biofilm. Several groups of bacteria and archaea were identified, showing the dominance of Proteobacteria in several samples analyzed and members of groups that previously received less attention, such as Firmicutes and Bacteroidetes. Our research also shows that metagenomic studies describe the presence of various Archaea domain thermophilic and methanogenic groups associated with metal corrosion. Thus, opening the prospect of describing new microbial groups as possible participants in this current global concern.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias - Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Hugerth LW, Andersson AF. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Front Microbiol 2017; 8:1561. [PMID: 28928718 PMCID: PMC5591341 DOI: 10.3389/fmicb.2017.01561] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Microbial ecology as a scientific field is fundamentally driven by technological advance. The past decade's revolution in DNA sequencing cost and throughput has made it possible for most research groups to map microbial community composition in environments of interest. However, the computational and statistical methodology required to analyse this kind of data is often not part of the biologist training. In this review, we give a historical perspective on the use of sequencing data in microbial ecology and restate the current need for this method; but also highlight the major caveats with standard practices for handling these data, from sample collection and library preparation to statistical analysis. Further, we outline the main new analytical tools that have been developed in the past few years to bypass these caveats, as well as highlight the major requirements of common statistical practices and the extent to which they are applicable to microbial data. Besides delving into the meaning of select alpha- and beta-diversity measures, we give special consideration to techniques for finding the main drivers of community dissimilarity and for interaction network construction. While every project design has specific needs, this review should serve as a starting point for considering what options are available.
Collapse
Affiliation(s)
- Luisa W Hugerth
- Department of Molecular, Tumour and Cell Biology, Centre for Translational Microbiome Research, Karolinska InstitutetSolna, Sweden.,Division of Gene Technology, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of TechnologySolna, Sweden
| | - Anders F Andersson
- Division of Gene Technology, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of TechnologySolna, Sweden
| |
Collapse
|
3
|
Hajmousa G, Vogelaar P, Brouwer LA, van der Graaf AC, Henning RH, Krenning G. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells. Biomaterials 2016; 119:43-52. [PMID: 28006657 DOI: 10.1016/j.biomaterials.2016.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/09/2023]
Abstract
Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their specific growth media offers an alternative and simple preservation method to liquid nitrogen cryopreservation or commercial preservation fluids for short-term storage and transport. However, accumulation of cell damage during hypothermia may result in cell injury and death upon rewarming through the production of excess reactive oxygen species (ROS). Here, the ability of the cell culture medium additive SUL-109, a modified 6-chromanol, to protect ASC from hypothermia and rewarming damage is examined. SUL-109 conveys protective effects against cold-induced damage in ASC as is observed by preservation of cell viability, adhesion properties and growth potential. SUL-109 does not reduce the multilineage differentiation capacity of ASC. SUL-109 conveys its protection against hypothermic damage by the preservation of the mitochondrial membrane potential through the activation of mitochondrial membrane complexes I and IV, and increases maximal oxygen consumption in FCCP uncoupled mitochondria. Consequently, SUL-109 alleviates mitochondrial ROS production and preserves ATP production. In summary, here we describe the generation of a single molecule cell preservation agent that protects ASC from hypothermic damage associated with short-term cell preservation that does not affect the differentiation capacity of ASC.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Pieter Vogelaar
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726GN, Groningen, The Netherlands
| | - Linda A Brouwer
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | | | - Robert H Henning
- Dept. Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EB71), 9713GZ, Groningen, The Netherlands
| | - Guido Krenning
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands; Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726GN, Groningen, The Netherlands.
| |
Collapse
|
4
|
Nural B, Erdemir A, Mutlu O, Yakarsonmez S, Danis O, Topuzogullari M, Turgut-Balik D. Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata. Mol Biotechnol 2016; 58:256-67. [PMID: 26921192 DOI: 10.1007/s12033-016-9924-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Theileria annulata is a parasite that causes theileriosis in cattle. Reports about drug resistance made essential to develop new drug. LDH of Theileria schizonts is the vital enzyme for its anaerobic metabolism. TaLDH gene was first cloned into pGEM-T cloning vector with two introns in our previous study. Here we report cloning of TaLDH without introns into pLATE 31 vector in E. coli BL21(DE3). Protein was in an inactive form. Two mutations were fixed to express the active protein. Protein was purified by affinity chromatography and evaluated by SDS-PAGE and size exclusion chromatography. Optimum pH of enzyme was performed in pH 7.5, and enzyme was stabilized at 20-40 °C. Enzyme kinetics of recombinant TaLDH were found to be in the direction of pyruvate to lactate K m 0.1324 and K i 4.295 mM, k cat, 44.55/s and k cat /K m, 3.3693 × 10(5)/M/s. 3D structure of TaLDH was predicted, and possible drug binding sites were determined by homology modelling.
Collapse
Affiliation(s)
- Belma Nural
- Department of Biotechnology and Biosafety, Institute of Science, Eskisehir Osmangazi University, Meselik, 26480, Eskisehir, Turkey
| | - Aysegul Erdemir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210, Istanbul, Turkey
| | - Ozal Mutlu
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Goztepe Campus, Goztepe, 34722, Istanbul, Turkey
| | - Sinem Yakarsonmez
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210, Istanbul, Turkey
| | - Ozkan Danis
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Goztepe Campus, Goztepe, 34722, Istanbul, Turkey
| | - Murat Topuzogullari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210, Istanbul, Turkey
| | - Dilek Turgut-Balik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210, Istanbul, Turkey.
| |
Collapse
|
5
|
Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast. Genetics 2015; 202:751-63. [PMID: 26596348 DOI: 10.1534/genetics.115.182774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Much of our knowledge about the fitness effects of new mutations has been gained from mutation accumulation (MA) experiments. Yet the fitness effect of single mutations is rarely measured in MA experiments. This raises several issues, notably for inferring epistasis for fitness. The acceleration of fitness decline in MA lines has been taken as evidence for synergistic epistasis, but establishing the role of epistasis requires measuring the fitness of genotypes carrying known numbers of mutations. Otherwise, accelerating fitness loss could be explained by increased genetic mutation rates. Here we segregated mutations accumulated over 4800 generations in haploid and diploid MA lines of the yeast Saccharomyces cerevisiae. We found no correspondence between an accelerated fitness decline and synergistic epistasis among deleterious mutations in haploid lines. Pairs of mutations showed no overall epistasis. Furthermore, several lines of evidence indicate that genetic mutation rates did not increase in the MA lines. Crucially, segregant fitness analyses revealed that MA accelerated in both haploid and diploid lines, even though the fitness of diploid lines was nearly constant during the MA experiment. This suggests that the accelerated fitness decline in haploids was caused by cryptic environmental factors that increased mutation rates in all lines during the last third of the lines' transfers. In addition, we provide new estimates of deleterious mutation rates, including lethal mutations, and highlight that nearly all the mutational load we observed was due to one or two mutations having a large effect on fitness.
Collapse
|
6
|
Todorova T, Pesheva M, Gregan F, Chankova S. Antioxidant, antimutagenic, and anticarcinogenic effects of Papaver rhoeas L. extract on Saccharomyces cerevisiae. J Med Food 2014; 18:460-7. [PMID: 25185065 DOI: 10.1089/jmf.2014.0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this work was to analyze the antioxidant and antimutagenic/anticarcinogenic capacity of Papaver rhoeas L. water extract against standard mutagen/carcinogen methyl methanesulfonate (MMS) and radiomimetic zeocin (Zeo) on a test system Saccharomyces cerevisiae. The following assays were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, quantitative determination of superoxide anion (antireactive oxygen species [antiROS test]), DNA topology assay, D7ts1 test--for antimutagenic--and Ty1 transposition test--for anticarcinogenic effects. Strong pro-oxidative capacity of Zeo was shown to correlate with its well-expressed mutagenic and carcinogenic properties. The mutagenic and carcinogenic effects of MMS were also confirmed. Our data concerning the antioxidant activity of P. rhoeas L. extract revealed that concentration corresponding to IC(50) in the DPPH assay possessed the highest antioxidant activity in the antiROS biological assay. It was also observed that a concentration with 50% scavenging activity expressed the most pronounced antimutagenic properties decreasing Zeo-induced gene conversion twofold, reverse mutation fivefold, and total aberrations fourfold. The same concentration possessed well-expressed anticarcinogenic properties measured as reduction of MMS-induced Ty1 transposition rate fivefold and fourfold when Zeo was used as an inductor. Based on the well-expressed antioxidant, antimutagenic, and anticarcinogenic properties obtained in this work, the P. rhoeas L. extract could be recommended for further investigations and possible use as a food additive.
Collapse
Affiliation(s)
- Teodora Todorova
- 1 Institute of Biodiversity and Ecosystem Research , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
7
|
Mazumder A, Pesudo LQ, McRee S, Bathe M, Samson LD. Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae. Nucleic Acids Res 2013; 41:9310-24. [PMID: 23935119 PMCID: PMC3814357 DOI: 10.1093/nar/gkt715] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An effective response to DNA damaging agents involves modulating numerous facets of cellular homeostasis in addition to DNA repair and cell-cycle checkpoint pathways. Fluorescence microscopy-based imaging offers the opportunity to simultaneously interrogate changes in both protein level and subcellular localization in response to DNA damaging agents at the single-cell level. We report here results from screening the yeast Green Fluorescent Protein (GFP)-fusion library to investigate global cellular protein reorganization on exposure to the alkylating agent methyl methanesulfonate (MMS). Broad groups of induced, repressed, nucleus- and cytoplasm-enriched proteins were identified. Gene Ontology and interactome analyses revealed the underlying cellular processes. Transcription factor (TF) analysis identified principal regulators of the response, and targets of all major stress-responsive TFs were enriched amongst the induced proteins. An unexpected partitioning of biological function according to the number of TFs targeting individual genes was revealed. Finally, differential modulation of ribosomal proteins depending on methyl methanesulfonate dose was shown to correlate with cell growth and with the translocation of the Sfp1 TF. We conclude that cellular responses can navigate different routes according to the extent of damage, relying on both expression and localization changes of specific proteins.
Collapse
Affiliation(s)
- Aprotim Mazumder
- Department of Biological Engineering, Center for Environmental Health Sciences, Laboratory for Computational Biology and Biophysics, Department of Biology and The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|