1
|
Ohsawa S, Oku M, Yurimoto H, Sakai Y. Regulation of Peroxisome Homeostasis by Post-Translational Modification in the Methylotrophic Yeast Komagataella phaffii. Front Cell Dev Biol 2022; 10:887806. [PMID: 35517506 PMCID: PMC9061947 DOI: 10.3389/fcell.2022.887806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (synoym Pichia pastoris) can grow on methanol with an associated proliferation of peroxisomes, which are subsequently degraded by pexophagy upon depletion of methanol. Two cell wall integrity and stress response component (WSC) family proteins (Wsc1 and Wsc3) sense the extracellular methanol concentration and transmit the methanol signal to Rom2. This stimulates the activation of transcription factors (Mxr1, Trm1, and Mit1 etc.), leading to the induction of methanol-metabolizing enzymes (methanol-induced gene expression) and synthesis of huge peroxisomes. Methanol-induced gene expression is repressed by the addition of ethanol (ethanol repression). This repression is not conducted directly by ethanol but rather by acetyl-CoA synthesized from ethanol by sequential reactions, including alcohol and aldehyde dehydrogenases, and acetyl-CoA synthetase. During ethanol repression, Mxr1 is inactivated by phosphorylation. Peroxisomes are degraded by pexophagy on depletion of methanol and this event is triggered by phosphorylation of Atg30 located at the peroxisome membrane. In the presence of methanol, Wsc1 and Wsc3 repress pexophagy by transmitting the methanol signal via the MAPK cascade to the transcription factor Rlm1, which induces phosphatases involved in dephosphorylation of Atg30. Upon methanol consumption, repression of Atg30 phosphorylation is released, resulting in initiation of pexophagy. Physiological significance of these machineries involved in peroxisome homeostasis and their post-translational modification is also discussed in association with the lifestyle of methylotrophic yeast in the phyllosphere.
Collapse
Affiliation(s)
- Shin Ohsawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahide Oku
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- *Correspondence: Yasuyoshi Sakai,
| |
Collapse
|
2
|
Takagi S, Tsutsumi N, Terui Y, Kong X, Yurimoto H, Sakai Y. Engineering the expression system for Komagataella phaffii (Pichia pastoris): an attempt to develop a methanol-free expression system. FEMS Yeast Res 2020; 19:5549515. [PMID: 31408151 PMCID: PMC6736287 DOI: 10.1093/femsyr/foz059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/11/2019] [Indexed: 11/13/2022] Open
Abstract
The construction of a methanol-free expression system of Komagataella phaffii (Pichia pastoris) was attempted by engineering a strong methanol-inducible DAS1 promoter using Citrobacter braakii phytase production as a model case. Constitutive expression of KpTRM1, formerly PRM1-a positive transcription regulator for methanol-utilization (MUT) genes of K. phaffii,was demonstrated to produce phytase without addition of methanol, especially when a DAS1 promoter was used but not an AOX1 promoter. Another positive regulator, Mxr1p, did not have the same effect on the DAS1 promoter, while it was more effective than KpTrmp1 on the AOX1 promoter. Removing a potential upstream repression sequence (URS) and multiplying UAS1DAS1 in the DAS1 promoter significantly enhanced the yield of C. braakii phytase with methanol-feeding, which surpassed the native AOX1 promoter by 80%. However, multiplying UAS1DAS1 did not affect the yield of methanol-free expression by constitutive KpTrm1p. Another important region to enhance the effect of KpTrm1p under a methanol-free condition was identified in the DAS1 promoter, and was termed ESPDAS1. Nevertheless, methanol-free phytase production using an engineered DAS1 promoter outperformed phytase production with the GAP promoter by 25%. Difference in regulation by known transcription factors on the AOX1 promoter and the DAS1 promoter was also illustrated.
Collapse
Affiliation(s)
- Shinobu Takagi
- Novozymes Japan Ltd, CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | - Noriko Tsutsumi
- Novozymes Japan Ltd, CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | - Yuji Terui
- Novozymes Japan Ltd, CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | - XiangYu Kong
- Novozymes (China) Investment Co. Ltd, 14 Xinxi Road, Shangdi Zone, Haidian District, 100085 Beijing, China
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Ohsawa S, Nishida S, Oku M, Sakai Y, Yurimoto H. Ethanol represses the expression of methanol-inducible genes via acetyl-CoA synthesis in the yeast Komagataella phaffii. Sci Rep 2018; 8:18051. [PMID: 30575795 PMCID: PMC6303403 DOI: 10.1038/s41598-018-36732-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
In methylotrophic yeasts, the expression of methanol-inducible genes is repressed by ethanol even in the presence of methanol, a phenomenon called ethanol repression. The mechanism of ethanol repression in Komagataella phaffii (Pichia pastoris) was studied, and acetyl-CoA synthesis from ethanol by sequential reactions of alcohol dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase (ACS) was involved in ethanol repression. Molecular analysis of the ACS-encoding gene product KpAcs1 revealed that its N-terminal motif, which is conserved in methylotrophic yeasts, was required for ethanol repression. ACS activity was downregulated during methanol-induced gene expression, which partially depended on autophagy. In addition, acetyl-CoA synthesis and phosphorylation of a transcription factor KpMxr1 were found to contribute to ethanol repression in a synergistic manner.
Collapse
Affiliation(s)
- Shin Ohsawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Nishida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A. Methanol independent induction in
Pichia pastoris
by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng 2018; 115:1037-1050. [DOI: 10.1002/bit.26529] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Vogl
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | | | - Pia C. Fauland
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Patrick Hyden
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Jasmin E. Fischer
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Christian Schmid
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Gerhard G. Thallinger
- Institute of Computational BiotechnologyGraz University of TechnologyGrazAustria
- OMICS Center GrazBioTechMed GrazGrazAustria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)GrazAustria
| | - Anton Glieder
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| |
Collapse
|
5
|
Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris. Sci Rep 2017; 7:41850. [PMID: 28150747 PMCID: PMC5288789 DOI: 10.1038/srep41850] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The alcohol oxidase 1 promoter (PAOX1) of Pichia pastoris is commonly used for high level expression of recombinant proteins. While the safety risk of methanol and tough process control for methanol induction usually cause problems especially in large-scale fermentation. By testing the functions of trans-acting elements of PAOX1 and combinatorially engineering of them, we successfully constructed a methanol-free PAOX1 start-up strain, in which, three transcription repressors were identified and deleted and, one transcription activator were overexpressed. The strain expressed 77% GFP levels in glycerol compared to the wide-type in methanol. Then, insulin precursor (IP) was expressed, taking which as a model, we developed a novel glucose-glycerol-shift induced PAOX1 start-up for this methanol-free strain. A batch phase with glucose of 40 g/L followed by controlling residual glucose not lower than 20 g/L was compatible for supporting cell growth and suppressing PAOX1. Then, glycerol induction was started after glucose used up. Accordingly, an optimal bioprocess was further determined, generating a high IP production of 2.46 g/L in a 5-L bioreactor with dramatical decrease of oxygen consumption and heat evolution comparing with the wild-type in methanol. This mutant and bioprocess represent a safe and efficient alternative to the traditional glycerol-repressed/methanol-induced PAOX1 system.
Collapse
|
6
|
Wakayama K, Yamaguchi S, Takeuchi A, Mizumura T, Ozawa S, Tomizuka N, Hayakawa T, Nakagawa T. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica. J Biosci Bioeng 2016; 122:545-549. [DOI: 10.1016/j.jbiosc.2016.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022]
|
7
|
Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M. A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact 2016; 15:178. [PMID: 27769297 PMCID: PMC5073731 DOI: 10.1186/s12934-016-0578-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022] Open
Abstract
Background As one of the most popular expression systems, recombinant protein expression in Pichia pastoris relies on the AOX1 promoter (PAOX1) which is strongly induced by methanol. However, the toxic and inflammatory nature of methanol restricts its application, especially in edible and medical products. Therefore, constructing a novel methanol-free system becomes necessary. The kinases involved in PAOX1 activation or repression by different carbon sources may be promising targets. Results We identified two kinase mutants: Δgut1 and Δdak, both of which showed strong alcohol oxidase activity under non-methanol carbon sources. Based on these two kinases, we constructed two methanol-free expression systems: Δgut1-HpGCY1-glycerol (PAOX1 induced by glycerol) and Δdak-DHA (PAOX1 induced by DHA). By comparing their GFP expression efficiencies, the latter one showed better potential. To further test the Δdak-DHA system, three more recombinant proteins were expressed as examples. We found that the expression ability of our novel methanol-free Δdak-DHA system was generally better than the constitutive GAP promoter, and reached 50–60 % of the traditional methanol induced system. Conclusions We successfully constructed a novel methanol-free expression system Δdak-DHA. This modified expression platform preserved the favorable regulatable nature of PAOX1, providing a potential alternative to the traditional system. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yiqi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chuixing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaolong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Oda S, Yurimoto H, Nitta N, Sakai Y. Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii. MICROBIOLOGY-SGM 2016; 162:898-907. [PMID: 26963751 DOI: 10.1099/mic.0.000275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256-292 or Δ107-237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1-20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.
Collapse
Affiliation(s)
- Saori Oda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| | - Nobuhisa Nitta
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| | - Yasuyoshi Sakai
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University,Kyoto,Japan.,Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,Kyoto,Japan
| |
Collapse
|
9
|
Wang X, Cai M, Shi L, Wang Q, Zhu J, Wang J, Zhou M, Zhou X, Zhang Y. PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris. Biotechnol Lett 2015; 38:291-8. [PMID: 26463371 DOI: 10.1007/s10529-015-1972-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The regulator in glycerol repression of Pichia pastoris AOX1 promoter (P AOX1 ) is still unclear. RESULTS A Cys2His2 zinc finger transcriptional repressor PpNrg1 localized to nucleus and participated in the repression of P AOX1 in P. pastoris in glucose and glycerol. Quantitative real-time PCR revealed that PpNrg1 repressed expression of numerous genes involved in methanol utilization and peroxisome biogenesis in 0.02 % glucose and 1 % (v/v) glycerol. Electrophoretic mobility shift assay and DNase I footprinting assay revealed that PpNrg1 bound to five sites of P AOX1 , including two binding sites of PpMxr1, which is an indispensable activator of P AOX1 in P. pastoris. CONCLUSION Transcriptional repressor PpNrg1 suppresses P AOX1 in glucose and glycerol by directly binding to five sites of P AOX1 , including two binding sites of transcriptional activator PpMxr1.
Collapse
Affiliation(s)
- Xiaolong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lei Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinxiang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinjia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China.
| |
Collapse
|
10
|
Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. EUKARYOTIC CELL 2015; 14:278-85. [PMID: 25595445 DOI: 10.1128/ec.00285-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.
Collapse
|