1
|
Kunze D, MacCallum D, Odds FC, Hube B. Multiple functions of DOA1 in Candida albicans. MICROBIOLOGY-SGM 2007; 153:1026-1041. [PMID: 17379712 DOI: 10.1099/mic.0.2006/002741-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While searching for regulators of virulence attributes of the human-pathogenic fungus Candida albicans, a gene was identified similar to the genes encoding the mammalian phospholipase A2-activating protein (PLAP) and the Saccharomyces cerevisiae protein Doa1, which is known to play a key role during ubiquitin (Ub)-dependent protein degradation. All three proteins contain WD-repeats. Both PLAP and CaDoa1 contain a mellitin-like sequence with a central 'KVL'. This mellitin-like sequence was shown to be necessary for full function of CaDoa1. CaDOA1 was expressed under all conditions investigated. Gene disruption of CaDOA1 caused phenotypes including modified colony morphologies, temperature sensitivity, reduced secretion of hydrolytic enzymes and hypersensitivity to various compounds such as propranolol, butanol, caffeine, chelators, azoles, nocodazole and cadmium. Strikingly, mutants lacking DOA1 were filamentous and grew as pseudohyphae and true hyphae under conditions that normally support yeast growth. Transcriptional profiling of Deltadoa1 indicated that several genes associated with Ub-mediated proteolysis, including CDC48 and UBI4, are upregulated. These data suggest that DOA1 of C. albicans, like its orthologue in S. cerevisiae, is associated with Ub-mediated proteolysis and has multiple functions. However, some functions of CaDoa1 seem to be unique for C. albicans. These results support the hypothesis that Ub-mediated proteolysis plays an important role in the regulation of morphology in C. albicans.
Collapse
Affiliation(s)
- Donika Kunze
- Robert Koch-Institut, Nordufer 20, D-13353, Berlin, Germany
| | - Donna MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Frank C Odds
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Lelbniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Beutenbergstraße 11a, D-07745 Jena, Germany
- Friedrich-Schiller-University, Jena, Germany
- Robert Koch-Institut, Nordufer 20, D-13353, Berlin, Germany
| |
Collapse
|
2
|
Su TM, Yang YS. Identification, purification, and characterization of a thermophilic imidase from pig liver. Protein Expr Purif 2000; 19:289-97. [PMID: 10873544 DOI: 10.1006/prep.2000.1250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates thermophilic imidase activity of the liver. We demonstrate that imidase catalyzes the hydrolysis of imides at a temperature substantially higher than that of its native environment. Then, a thermophilic imidase is purified to homogeneity from pig liver, and its thermoproperties are studied. About 2500-fold of purification and 15% yield of imidase activity are obtained after ammonium sulfate precipitation, octyl, DEAE, chelation, and gel filtration chromatography. While avoiding heat treatment for the protein purification, this study also indicates that only one enzyme is responsible for the imidase activity. This homogenous enzyme prefers to catalyze hydrolysis of imides at above 60 degrees C rather than at the body temperature of a pig. Although stable at below 50 degrees C, imidase quickly loses its activity at above 65 degrees C. Thus, the temperature effect on imidase activity is limited mainly by its thermostability. Substrate specificity of imidase is also temperature dependent. Our results demonstrate that the hydrolysis of physiological substrates is the most temperature dependent and that of hydantoins is the least temperature dependent. When increasing the reaction temperature from 25 to 60 degrees C, specific activities increase 50- and 60-fold for dihydrouracil and dihydrothymine, respectively. The temperature effect on the K(m) and V(max) of imidase is substrate dependent.
Collapse
Affiliation(s)
- T M Su
- Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | |
Collapse
|
3
|
Gojkovic Z, Jahnke K, Schnackerz KD, Piskur J. PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 2000; 295:1073-87. [PMID: 10656811 DOI: 10.1006/jmbi.1999.3393] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most fungi cannot use pyrimidines or their degradation products as the sole nitrogen source. Previously, we screened several yeasts for their ability to catabolise pyrimidines. One of them, Saccharomyces kluyveri, was able to degrade the majority of pyrimidines. Here, a series of molecular techniques have been modified to clone pyrimidine catabolic genes, study their expression and purify the corresponding enzymes from this yeast. The pyd2-1 mutant, which lacked the 5,6-dihydropyrimidine amidohydrolase (DHPase) activity, was transformed with wild-type S. kluyveri genomic library. The complementing plasmid contained the full sequence of the PYD2 gene, which exhibited a high level of homology with mammalian DHPases and bacterial hydantoinases. The organisation of PYD2 showed a couple of specific features. The 542-codons open reading frame was interrupted by a 63 bp intron, which does not contain the Saccharomyces cerevisiae branch-point sequence, and the transcripts contained a long 5' untranslated leader with five or six AUG codons. The derived amino acid sequence showed similarities with dihydroorotases, allantoinases and uricases from various organisms. Surprisingly, the URA4 gene from S. cerevisiae, which encodes dihydroorotase, shows greater similarity to PYD2 and other catabolic enzymes than to dihydroorotases from several other non-fungal organisms. The S. kluyveri DHPase was purified to homogeneity and sequencing of the N-terminal region revealed that the purified enzyme corresponds to the PYD2 gene product. The enzyme is a tetramer, likely consisting of similar if not identical subunits each with a molecular mass of 59 kDa. The S. kluyveri DHPase was capable of catalysing both dihydrouracil and dihydrothymine degradation, presumably by the same reaction mechanism as that described for mammalian DHPase. On the other hand, the regulation of the yeast PYD2 gene and DHPase seem to be different from that in other organisms. DHPase activity and Northern analysis demonstrated that PYD2 expression is inducible by dihydrouracil, though not by uracil. Apparently, dihydrouracil and DHPase represent an important regulatory checkpoint of the pyrimidine catabolic pathway in S. kluyveri.
Collapse
Affiliation(s)
- Z Gojkovic
- Department of Microbiology Building 301, Technical University of Denmark, Lyngby, DK-2800, Denmark
| | | | | | | |
Collapse
|
4
|
Casal M, Paiva S, Andrade RP, Gancedo C, Leão C. The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 1999; 181:2620-3. [PMID: 10198029 PMCID: PMC93691 DOI: 10.1128/jb.181.8.2620-2623.1999] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1998] [Accepted: 01/22/1999] [Indexed: 11/20/2022] Open
Abstract
A mutant of Saccharomyces cerevisiae deficient in the lactate-proton symport was isolated. Transformation of the mutant with a yeast genomic library allowed the isolation of the gene JEN1 that restored lactate transport. Disruption of JEN1 abolished uptake of lactate. The results indicate that, under the experimental conditions tested, no other monocarboxylate permease is able to efficiently transport lactate in S. cerevisiae.
Collapse
Affiliation(s)
- M Casal
- Centro de Ciências do Ambiente, Departamento de Biologia, Universidade do Minho, 4719 Braga Codex, Portugal
| | | | | | | | | |
Collapse
|
5
|
Havelaar AC, Beerens CE, Mancini GM, Verheijen FW. Transport of organic anions by the lysosomal sialic acid transporter: a functional approach towards the gene for sialic acid storage disease. FEBS Lett 1999; 446:65-8. [PMID: 10100616 DOI: 10.1016/s0014-5793(99)00187-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transport of sialic acid through the lysosomal membrane is defective in the human sialic acid storage disease. The mammalian sialic acid carrier has a wide substrate specificity for acidic monosaccharides. Recently, we showed that also non-sugar monocarboxylates like L-lactate are substrates for the carrier. Here we report that other organic anions, which are substrates for carriers belonging to several anion transporter families, are recognized by the sialic acid transporter. Hence, the mammalian system reveals once more novel aspects of solute transport, including sugars and a wide array of non-sugar compounds, apparently unique to this system. These data suggest that the search for the sialic acid storage disease gene can be initiated by a functional selection of genes from a limited number of anion transporter families. Among these, candidates will be identified by mapping to the known sialic acid storage disease locus.
Collapse
Affiliation(s)
- A C Havelaar
- Department of Clinical Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
6
|
Tzermia M, Katsoulou C, Alexandraki D. Sequence analysis of a 33.2 kb segment from the left arm of yeast chromosome XV reveals eight known genes and ten new open reading frames including homologues of ABC transporters, inositol phosphatases and human expressed sequence tags. Yeast 1997; 13:583-9. [PMID: 9178509 DOI: 10.1002/(sici)1097-0061(199705)13:6<583::aid-yea111>3.0.co;2-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete nucleotide sequence of a 33221 bp segment, contained in cosmid pEOA1044, derived from the left arm of chromosome XV of Saccharomyces cerevisiae, appears in public databases between coordinates 177013 and 210234 (http://speedy.mips.biochem.mpg.de/). Computer analysis of that sequence revealed the presence of the previously known genes IRA2, DEC1, NUF2, HST1, RTG1, RIB2 and HAL2, one previously partially sequenced open reading frame (ORF) of unknown function (SCORFAC) and ten newly identified ORFs. One of the new ORFs is similar to the Drosophila melanogaster white gene and other transmembrane ABC transporters, another one has similarities to inositol phosphatases and others are similar to ORFs of unknown function from various organisms, including human Expressed Sequence Tags (ESTs). Potential transmembrane regions, ATP/GTP-binding and WD motifs have also been identified. The existence of yeast ESTs for two of the newly identified ORFs indicates that they are transcribed.
Collapse
Affiliation(s)
- M Tzermia
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | | | |
Collapse
|
7
|
Ye GJ, Breslow EB, Meister A, Guo-jie GE. The amino acid sequence of rat kidney 5-oxo-L-prolinase determined by cDNA cloning. J Biol Chem 1996; 271:32293-300. [PMID: 8943290 DOI: 10.1074/jbc.271.50.32293] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
5-Oxoprolinase (EC 3.5.2) catalyzes a reaction in which the endergonic cleavage of 5-oxo-L-proline to form L-glutamate is coupled to the exergonic hydrolysis of ATP to ADP and inorganic phosphate. Highly purified preparations of the enzyme have been obtained from rat kidney and Pseudomonas putida. The rat kidney enzyme is composed of two strongly interacting, apparently identical subunits (Mr = 142,000), whereas that from P. putida is composed of two functionally different protein components that can readily be dissociated. Here we report the cloning of rat kidney 5-oxoprolinase with preliminary expression studies. cDNA clones encoding the enzyme were isolated by screening a lambdagt11 cDNA library beginning with a degenerate oligonucleotide probe based on peptide sequence data obtained from the purified enzyme. The whole cDNA clone was completed by amplifying its 5' end from a premade library of rat kidney Marathon-ReadyTM cDNAs using polymerase chain reaction methodology. The composite cDNA (4,016 bases) revealed an uninterrupted open reading frame encoding 1,288 amino acid residues (Mr = 137,759). The deduced amino acid sequence contains all four of the peptide sequences that were independently found in peptide fragments derived from the enzyme. Expression of the full-length clone in Escherichia coli yielded a product of the same size as the rat kidney enzyme and which reacted with antibodies directed against the rat kidney enzyme. The predicted amino acid sequence is almost 50% identical throughout its entire length to that of a hypothetical yeast protein YKL215C. It is also 26% identical in half its length to the bacterial hydantoinase HyuA and 26% identical in the other half to the bacterial hydantoinase HyuB. The results suggest unexpected evolutionary relationships among the hydantoinases and rat kidney 5-oxoprolinase which share the common property of hydrolyzing the imide bond of 5-membered rings but which do not all require ATP.
Collapse
Affiliation(s)
- G J Ye
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
8
|
Keil RL, Wolfe D, Reiner T, Peterson CJ, Riley JL. Molecular genetic analysis of volatile-anesthetic action. Mol Cell Biol 1996; 16:3446-53. [PMID: 8668160 PMCID: PMC231339 DOI: 10.1128/mcb.16.7.3446] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mechanism(s) and site(s) of action of volatile inhaled anesthetics are unknown in spite of the clinical use of these agents for more than 150 years. In the present study, the model eukaryote Saccharomyces cerevisiae was used to investigate the action of anesthetic agents because of its powerful molecular genetics. It was found that growth of yeast cells is inhibited by the five common volatile anesthetics tested (isoflurane, halothane, enflurane, sevoflurane, and methoxyflurane). Growth inhibition by the agents is relatively rapid and reversible. The potency of these compounds as yeast growth inhibitors directly correlates with their lipophilicity as is predicted by the Meyer-Overton relationship, which directly correlates anesthetic potency of agents and their lipophilicity. The effects of isoflurane on yeast cells were characterized in the most detail. Yeast cells survive at least 48 h in a concentration of isoflurane that inhibits colony formation. Mutants resistant to the growth-inhibitory effects of isoflurane are readily selected. The gene identified by one of these mutations, zzz4-1, has been cloned and characterized. The predicted ZZZ4 gene product has extensive homology to phospholipase A2-activating protein, a GO effector protein of mice. Both zzz4-1 and a deletion of ZZZ4 confer resistance to all five of the agents tested, suggesting that signal transduction may be involved in the response of these cells to volatile anesthetics.
Collapse
Affiliation(s)
- R L Keil
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, 17033, USA
| | | | | | | | | |
Collapse
|
9
|
Katsoulou C, Tzermia M, Tavernarakis N, Alexandraki D. Sequence analysis of a 40·7 kb segment from the left arm of yeast chromosome X reveals 14 known genes and 13 new open reading frames including homologues of genes clustered on the right arm of chromosome XI. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960630)12:8<787::aid-yea954>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Katsoulou C, Tzermia M, Tavernarakis N, Alexandraki D. Sequence analysis of a 40.7 kb segment from the left arm of yeast chromosome X reveals 14 known genes and 13 new open reading frames including homologues of genes clustered on the right arm of chromosome XI. Yeast 1996; 12:787-97. [PMID: 8813765 DOI: 10.1002/(sici)1097-0061(19960630)12:8%3c787::aid-yea954%3e3.0.co;2-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The complete nucleotide sequence of a 40.7 kb segment about 130 kb from the left end of chromosome X of Saccharomyces cerevisiae was determined from two overlapping cosmids. Computer analysis of that sequence revealed the presence of the previously known genes VPS35, INO1, SnR128, SnR190, MP12, YAK1, RPB4, YUR1, TIF2, MRS3 and URA2, three previously sequenced open reading frames (ORFs) of unknown function 5' of the INO1, 5' of the MP12 and 3' of the URA2 genes and 13 newly identified ORFs. One of the new ORFs is homologous to mammalian glycogenin glycosyltransferases and another has similarities to the human phospholipase D. Some others contain potential transmembrane regions or leucine zipper motifs. The existence of yeast expressed sequence tags for some of the newly identified ORFs indicates that they are transcribed. A cluster of six genes within 10 kb (YUR1, TIF2, two new ORFs, an RSP25 homologue and MRS3) have homologues arranged similarly within 28.5 kb on the right arm of chromosome XI.
Collapse
Affiliation(s)
- C Katsoulou
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | | | | | |
Collapse
|
11
|
Abstract
All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing.
Collapse
Affiliation(s)
- B Andre
- Laboratoire de Physiologie Cellulaire et de Genetique des Levures, Universite Libre de Bruxelles, Belgium.
| |
Collapse
|
12
|
Alexandraki D, Tzermia M. Sequencing of a 13.2 kb segment next to the left telomere of yeast chromosome XI revealed five open reading frames and recent recombination events with the right arms of chromosomes III and V. Yeast 1994; 10 Suppl A:S81-91. [PMID: 8091865 DOI: 10.1002/yea.320100011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We report the entire sequence of a 13.2 kb segment next to the left telomere of chromosome XI of Saccharomyces cerevisiae. A 1.2 kb fragment near one end is 91% homologous to the right arm of chromosome III and 0.7 kb of that are 77% homologous to the right arm of chromosome V. Five open reading frames are included in the sequenced segment. Two of them are almost identical to the known YCR104W and YCR103C hypothetical proteins of chromosome III. A third one contains a region homologous to the Zn (2)-Cys (6) binuclear cluster pattern of fungal transcriptional activators. The fourth one, part of which is similar to the mammalian putative transporter of mevalonate, has the structure of membrane transporters. The fifth one is similar to yeast ferric reductase.
Collapse
Affiliation(s)
- D Alexandraki
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | |
Collapse
|