1
|
Mandel MJ, Krieck S, Görls H, Westerhausen M. Bulky Hybrid
C‐
Scorpionate/Amidinate Complexes of Lithium and Zinc. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miles J. Mandel
- Institute of Inorganic and Analytical Chemistry Chair of Inorganic Chemistry I Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Sven Krieck
- Institute of Inorganic and Analytical Chemistry Chair of Inorganic Chemistry I Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry Chair of Inorganic Chemistry I Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry Chair of Inorganic Chemistry I Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
2
|
Thomas F, Oster M, Schön F, Göbgen KC, Amarouch B, Steden D, Hoffmann A, Herres-Pawlis S. A new generation of terminal copper nitrenes and their application in aromatic C-H amination reactions. Dalton Trans 2021; 50:6444-6462. [PMID: 33908532 DOI: 10.1039/d1dt00832c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitrene complexes are highly reactive species and are known as intermediates in the copper catalyzed C-H amination. In this study, three novel copper tosyl nitrene complexes were synthesized at low temperatures, stabilized with heteroscorpionate ligands of the bis(pyrazolyl)methane family. The copper nitrenes were obtained by the reaction of a copper(i) acetonitrile complex with SPhINTs in dichloromethane. We show that the ligand design has a major influence on the catalytic activity and the thermal stability of the copper nitrene complex. Not only the choice of the third N donor, but also the substituent in the 5-position of the pyrazolyl moiety, have an impact on the stability. Furthermore, the novel copper nitrene complexes were used for catalytic aziridination of styrenes and C-H amination reactions of aromatic and aliphatic substrates under mild reaction conditions. Even challenging substrates like benzene and cyclohexane were aminated with good yields. The copper nitrene complexes were characterized using UV/Vis spectroscopy, low temperature Evans NMR spectroscopy, density functional theory, domain-based local pair natural orbital coupled cluster calculations (DLPNO-CCSD(T)) and cryo-UHR mass spectrometry.
Collapse
Affiliation(s)
- Fabian Thomas
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline. Molecules 2020; 25:molecules25225324. [PMID: 33203086 PMCID: PMC7697942 DOI: 10.3390/molecules25225324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Two different coordination compounds of copper were synthesized from the same building blocks (1,10-phenanthroline, bromoacetate anions, and copper cations). The synthesis parameters were carefully designed and evaluated to allow the change of the resulting compounds molecular structure, i.e., formation of mononuclear (bromoacetato-O,O')(bromoacetato-O)aqua(1,10-phenanthroline-N,N')copper(II) and dinuclear (μ-bromido-1:2κ2)bis(μ-bromoacetato-1κO,2κO')bis(1,10-phenanthroline-N,N')dicopper(II) bromoacetate bromoacetic acid solvate. The crystal, molecular and supramolecular structures of the studied compounds were determined and evaluated in Hirshfeld analysis. The UV-Vis-IR absorption and thermal properties were studied and discussed. For the explicit determination of the influence of compounds structure on radiation absorption in UV-Vis range, density functional theory and time-dependent density functional theory calculations were performed.
Collapse
|
4
|
Keisers K, Hüppe HM, Iffland-Mühlhaus L, Hoffmann A, Göbel C, Apfel UP, Weber B, Herres-Pawlis S. Interplay of Spin Crossover and Coordination-Induced Spin State Switch for Iron Bis(pyrazolyl)methanes in Solution. Inorg Chem 2020; 59:15343-15354. [PMID: 33002361 DOI: 10.1021/acs.inorgchem.0c02306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bis(pyrazolyl)bipyridinylmethane iron(II) complexes show a versatile spin state switching behavior in different solvents. In the solid, the magnetic properties of the compounds have been characterized by X-ray diffraction, Mößbauer spectroscopy, and SQUID magnetometry and point toward a high spin state. For nitrilic solvents, the solvation of the complexes leads to a change of the coordination environment from {N5O} to {N6} and results in a temperature-dependent SCO behavior. Thermodynamic properties of this transformation are obtained via UV/vis spectroscopy, SQUID measurements, and the Evans NMR method. Moreover, a coordination-induced spin state switch (CISSS) to low spin is observed by using methanol as solvent, triggered through a rearrangement of the coordination sphere. The same behavior can be observed by changing the stoichiometry of the ligand-to-metal ratio in MeCN, where the process is reversible. This transformation is monitored via UV/vis spectroscopy, and the resulting new bis-meridional coordination motif, first described for bis(pyrazolyl)methanes, is characterized in the solid state via X-ray diffraction, Mößbauer spectroscopy, and SQUID measurements. The sophisticated correlation of these switchable properties in dependence on different types of solvents reveals that the influence of the solvent on the coordination environment and magnetic properties should not be underestimated. Furthermore, careful investigation is necessary to differentiate between a thermally-induced spin crossover and a coordination-induced spin state switch.
Collapse
Affiliation(s)
- Kristina Keisers
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Henrika M Hüppe
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Linda Iffland-Mühlhaus
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Christoph Göbel
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany
| | - Birgit Weber
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| |
Collapse
|