1
|
Jaeger R, He O, Sander S, Dirican D, Ahrens M, Braun T. Routes to Pt Derivatives of High-Valent Sulfur Oxofluorides S(═O) 2F, S(═O)F 2, and S(═O)F 3 by Fluorination and Oxygenation. Angew Chem Int Ed Engl 2025; 64:e202503153. [PMID: 40146430 PMCID: PMC12124436 DOI: 10.1002/anie.202503153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 03/28/2025]
Abstract
Metal derivatives of high-valent sulfur fluorides and oxofluorides can provid e fluorinated building blocks for materials science and bioactive compounds, but so far, such building blocks are elusive. The paper describes routes to access remarkable metal derivatives of S(═O)2F, S(═O)F2, and S(═O)F3 by oxygenation or fluorination steps. The Pt(II) fluorido complex trans-[Pt(F)(SOF)(PCy3)2] (2) reacts with the Davis reagent (3-phenyl-2-(phenylsulfonyl)-1,2-oxaziridine) to yield the sulfuryl fluorido complex trans-[Pt(F)(SO2F)(PCy3)2] (4). Notably, the electrophilic fluorinating agent NFSI (N-fluorobenzenesulfonimide) reacts with 2 to form trans-[Pt(F)(SOF2)(PCy3)2][NFSO2Ph] (5a). By nucleophilic fluorination with TMAF (Me4NF) it is possible to fluorinate the sulfur center once more to give the complex trans-[Pt(F)(SOF3)(PCy3)2] (6) bearing an unprecedented SOF3 ligand. Above 283 K, complex 6 shows a decomposition of the SOF3 moiety to form trans-[Pt(F)2(PCy3)2] (7) and SOF2. The described complexes could represent a previously unknown class of transfer reagents for high-valent sulfur fluoride units.
Collapse
Affiliation(s)
- Ruben Jaeger
- Department of ChemistryHumboldt‐Universität zu BerlinBrook‐Taylor‐Straße 212489BerlinGermany
| | - Ouchan He
- Department of ChemistryHumboldt‐Universität zu BerlinBrook‐Taylor‐Straße 212489BerlinGermany
| | - Stefan Sander
- Department of ChemistryHumboldt‐Universität zu BerlinBrook‐Taylor‐Straße 212489BerlinGermany
| | - Dilcan Dirican
- Department of ChemistryHumboldt‐Universität zu BerlinBrook‐Taylor‐Straße 212489BerlinGermany
| | - Mike Ahrens
- Department of ChemistryHumboldt‐Universität zu BerlinBrook‐Taylor‐Straße 212489BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt‐Universität zu BerlinBrook‐Taylor‐Straße 212489BerlinGermany
| |
Collapse
|
2
|
Jaeger R, Rachor SG, Ahrens M, Braun T. Activation of SO 2F 2 at a Rhodium PNP Pincer Complex: Ligand Supported S-F Bond Cleavage to Generate NSO 2F Derivatives. Chemistry 2024; 30:e202401571. [PMID: 38757784 DOI: 10.1002/chem.202401571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
The κ2-(P,N)-phosphine ligand precursor NH(CH2CH2PCy2)2 can be used for the synthesis of the rhodium(I) complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NHC2H4PCy2}][Cl] (1). The deprotonated complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NC2H4PCy2}] (2) shows a cooperative reactivity of the PNP ligand in the activation reaction of SO2F2 to yield the rhodium fluorido complex trans-[Rh(F)(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (3) by S-F bond cleavage. It is remarkable that no reaction was observed when 3 was treated with hydrogen sources e. g. dihydrogen, organosilicon compounds such as triethylsilane or TMS-CF3 and different fluorine sources such as SF4 or Selectfluor®. However, the treatment of complex 3 with XeF2 in the presence of CsF resulted in the formation of the unique fluorido rhodium(III) complex cis,trans-[Rh(F)3(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (4). In the presence of pyridine(HF)X or BF3 the fluorido complex 3 converted into the dicationic complexes [Rh(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2[XF]2, X=HF (5) or BF3 (6), respectively.
Collapse
Affiliation(s)
- Ruben Jaeger
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Simon G Rachor
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Mike Ahrens
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Wozniak M, Sander S, Cula B, Ahrens M, Braun T. Reactivity of Xantphos-Type Rhodium Complexes Towards SF 4 : SF 3 Versus SF 2 Complex Generation. Chemistry 2022; 28:e202200626. [PMID: 35420718 PMCID: PMC9322540 DOI: 10.1002/chem.202200626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/16/2022]
Abstract
S-F-bond activation of sulfur tetrafluoride at [Rh(Cl)(tBu xanPOP)] (1; tBu xanPOP=9,9-dimethyl-4,5-bis-(di-tert-butylphosphino)-xanthene) led to the formation of the cationic complex [Rh(F)(Cl)(SF2 )(tBu xanPOP)][SF5 ] (2 a) together with trans-[Rh(Cl)(F)2 (tBu xanPOP)] (3) and cis-[Rh(Cl)2 (F)(tBu xanPOP)] (4) which both could also be obtained by the reaction of SF5 Cl with 1. In contrast to that, the conversion of SF4 at the methyl complex [Rh(Me)(tBu xanPOP)] (5) gave the isolable and room-temperature stable cationic λ4 -trifluorosulfanyl complex [Rh(Me)(SF3 )(tBu xanPOP)][SF5 ] (6). Treatment of 6 with the Lewis acids BF3 or AsF5 produced the dicationic difluorosulfanyl complex [Rh(Me)(SF2 )(tBu xanPOP)][BF4 ]2 (8 a) or [Rh(Me)(SF2 )(tBu xanPOP)][AsF6 ]2 (8 b), respectively. Refluorination of 8 a was possible with the use of dimethylamine giving [Rh(Me)(SF3 )(tBu xanPOP)][BF4 ] (9). A reaction of 6 with trichloroisocyanuric acid (TClCA) gave the fluorido complex [Rh(F)(Cl)(SF2 )(tBu xanPOP)][Cl] (2 b) together with chloromethane and SF5 Cl.
Collapse
Affiliation(s)
- Martin Wozniak
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Beatrice Cula
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Mike Ahrens
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
4
|
Dirican D, Talavera M, Braun T. Fluorination Reactions at a Platinum Carbene Complex: Reaction Routes to SF 3 , S(=O)F and Fluorido Complexes. Chemistry 2021; 27:17707-17712. [PMID: 34634177 PMCID: PMC9298267 DOI: 10.1002/chem.202103311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 01/10/2023]
Abstract
The electron-rich Pt complex [Pt(IMes)2 ] (IMes: [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolinylidine]) can be used as precursor for the syntheses of a variety of fluorido ligand containing compounds. The sulfur fluoride SF4 undergoes a rapid oxidative addition at Pt0 to yield trans-[Pt(F)(SF3 )(IMes)2 ]. A photolytic reaction of SF6 at [Pt(IMes)2 ] in the presence of IMes gave the fluorido complexes trans-[Pt(F)2 (IMes)2 ] and trans-[Pt(F)(SF3 )(IMes)2 ] along with trans-[Pt(F)(SOF)(IMes)2 ] and trans-[Pt(F)(IMes')(IMes)] (IMes': cyclometalated IMes ligand), the latter being products produced by reaction with adventitious water. trans-[Pt(F)(SOF)(IMes)2 ] and trans-[Pt(F)2 (IMes)2 ] were synthesized independently by treatment of [Pt(IMes)2 ] with SOF2 or XeF2 . A reaction of [Pt(IMes)2 ] with a HF source gave trans-[Pt(H)(F)(IMes)2 ], and an intermediate bifluorido complex trans-[Pt(H)(FHF)(IMes)2 ] was identified. Compound trans-[Pt(H)(F)(IMes)2 ] converts in the presence of CsF into trans-[Pt(F)(IMes')(IMes)].
Collapse
Affiliation(s)
- Dilcan Dirican
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| | - Maria Talavera
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| | - Thomas Braun
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
5
|
Sander S, Müller R, Ahrens M, Kaupp M, Braun T. Platinum Indolylphosphine Fluorido and Polyfluorido Complexes: An Interplay between Cyclometallation, Fluoride Migration, and Hydrogen Bonding. Chemistry 2021; 27:14287-14298. [PMID: 34337795 PMCID: PMC8596594 DOI: 10.1002/chem.202102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/06/2022]
Abstract
The reaction of [PtCl2 (COD)] (COD=1,5-cyclooctadiene) with diisopropyl-2-(3-methyl)indolylphosphine (iPr2 P(C9 H8 N)) led to the formation of the platinum(ii) chlorido complexes, cis-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (1) and trans-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (2). The cis-complex 1 reacted with NEt3 yielding the complex cis-[PtCl{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] (3) bearing a cyclometalated κ2 -(P,N)-phosphine ligand, while the isomer 2 with a trans-configuration did not show any reactivity towards NEt3 . Treatment of 1 or 3 with (CH3 )4 NF (TMAF) resulted in the formation of the twofold cyclometalated complex cis-[Pt{κ2 -(P,N)-iPr2 P(C9 H7 N)}2 ] (4). The molecular structures of the complexes 1-4 were determined by single-crystal X-ray diffraction. The fluorido complex cis-[PtF{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] ⋅ (HF)4 (5 ⋅ (HF)4 ) was formed when complex 4 was treated with different hydrogen fluoride sources. The Pt(ii) fluorido complex 5 ⋅ (HF)4 exhibits intramolecular hydrogen bonding in its outer coordination sphere between the fluorido ligand and the NH group of the 3-methylindolyl moiety. In contrast to its chlorido analogue 3, complex 5 ⋅ (HF)4 reacted with CO or the ynamide 1-(2-phenylethynyl)-2-pyrrolidinone to yield the complexes trans-[Pt(CO){κ2 -(P,C)-iPr2 P(C9 H7 NCO)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (7) and a complex, which we suggest to be cis-[Pt{C=C(Ph)OCN(C3 H6 )}{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (9), respectively. The structure of 9 was assigned on the basis of DFT calculations as well as NMR and IR data. Hydrogen bonding of HF and NH to fluoride was proven to be crucial for the existence of 7 and 9.
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Mike Ahrens
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
6
|
Matsumoto K, Gerken M. Recent advances in sulfur tetrafluoride chemistry: syntheses, structures, and applications. Dalton Trans 2021; 50:12791-12799. [PMID: 34499061 DOI: 10.1039/d1dt02704b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sulfur and fluorine occupy crucial positions in main group chemistry because these two elements form a variety of compounds with versatile bond modalities and unique functionalities. Among sulfur-fluorine compounds, the importance of SF4 and its derivatives is recognized in the literature. The amphoteric nature of SF4 results in its rich Lewis acidic and basic reactivities; the reactions with F- acceptors and donors yield [SF3]+ and [SF5]- salts, respectively. Lewis basic molecules can also form adducts with SF4via various interaction motifs. The deoxofluorinating properties of SF4 have been used by organic chemists to selectively introduce fluorine atoms in specific substrates, extending also to industrial applications. Although the properties and reactivity of SF4 have been studied since its first synthesis, the recent progress in the SF4-related chemistry is striking, involving various fields of chemistry. In this Frontier article, recent advances, mainly the last ten years, in syntheses and structures of SF4-related compounds including its cationic and anionic derivatives and adducts with Lewis bases are concisely reviewed. Their uses in fundamental and applied inorganic chemistries are also described.
Collapse
Affiliation(s)
- Kazuhiko Matsumoto
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Michael Gerken
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
7
|
Talavera M, Braun T. Versatile Reaction Pathways of 1,1,3,3,3-Pentafluoropropene at Rh(I) Complexes [Rh(E)(PEt 3 ) 3 ] (E=H, GePh 3 , Si(OEt) 3 , F, Cl): C-F versus C-H Bond Activation Steps. Chemistry 2021; 27:11926-11934. [PMID: 34118095 PMCID: PMC8456946 DOI: 10.1002/chem.202101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/08/2022]
Abstract
The reaction of the rhodium(I) complexes [Rh(E)(PEt3)3] (E=GePh3 (1), H (6), F (7)) with 1,1,3,3,3‐pentafluoropropene afforded the defluorinative germylation products Z/E‐2‐(triphenylgermyl)‐1,3,3,3‐tetrafluoropropene and the fluorido complex [Rh(F)(CF3CHCF2)(PEt3)2] (2) together with the fluorophosphorane E‐(CF3)CH=CF(PFEt3). For [Rh(Si(OEt)3)(PEt3)3] (4) the coordination of the fluoroolefin was found to give [Rh{Si(OEt)3}(CF3CHCF2)(PEt3)2] (5). Two equivalents of complex 2 reacted further by C−F bond oxidative addition to yield [Rh(CF=CHCF3)(PEt3)2(μ‐F)3Rh(CF3CHCF2)(PEt3)] (9). The role of the fluorido ligand on the reactivity of complex 2 was assessed by comparison with the analogous chlorido complex. The use of complexes 1, 4 and 6 as catalysts for the derivatization of 1,1,3,3,3‐pentafluoropropene provided products, which were generated by hydrodefluorination, hydrometallation and germylation reactions.
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| |
Collapse
|
8
|
|
9
|
Pfister N, Bui M, Braun T, Wittwer P, Ahrens M. Synthesis and Reactivity of Iridium(I) Fluorido Complexes: Oxidative Addition of SF
4
at
trans
‐[Ir(F)(CO)(PEt
3
)
2
]. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nils Pfister
- Department of Chemistry Humboldt Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Minh Bui
- Department of Chemistry Humboldt Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry Humboldt Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Philipp Wittwer
- Department of Chemistry Humboldt Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Mike Ahrens
- Department of Chemistry Humboldt Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| |
Collapse
|
10
|
Dirican D, Pfister N, Wozniak M, Braun T. Reactivity of Binary and Ternary Sulfur Halides towards Transition-Metal Compounds. Chemistry 2020; 26:6945-6963. [PMID: 31840851 PMCID: PMC7318666 DOI: 10.1002/chem.201904493] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/23/2022]
Abstract
Binary sulfur fluorides exhibit an interesting reactivity towards transition metal complexes. They open up routes for the generation of sulfur‐containing building blocks. Often ligands with particular properties can be constructed. This includes their ability to transfer sulfur atoms or polysulfide units as well as fluorination reactions. This Minireview provides an insight into the reactivity of the binary and ternary sulfur halides S2Cl2, SCl2, SF4, SF6 and SF5Cl towards transition‐metal compounds.
Collapse
Affiliation(s)
- Dilcan Dirican
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Nils Pfister
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Martin Wozniak
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
11
|
Xu C, Talavera M, Sander S, Braun T. C-H and C-F bond activation reactions of pentafluorostyrene at rhodium complexes. Dalton Trans 2019; 48:16258-16267. [PMID: 31617524 DOI: 10.1039/c9dt03371h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The rhodium(i) complexes [Rh(Bpin)(PEt3)3] (1), [Rh(H)(PEt3)3] (5) and [Rh(Me)(PEt3)3] (14) were employed in reactions with pentafluorostyrene affording coordination of the olefin and C-F or C-H bond activation. Control of the reaction conditions allowed for selective activation reactions at different positions at the fluorinated aromatic ring. The rhodacycle trans-[Rh(F)(CH2CH2(2-C6F4))(PEt3)2] (7) was identified as an intermediate for an activation at the 2-position. Reactivity studies of the latter with CO led to the generation of trans-[Rh(F)(CH2CH2C6F4)(CO)(PEt3)2] (10). Stoichiometric and catalytic hydroboration reactions were achieved using complexes 1 or 5 as catalysts.
Collapse
Affiliation(s)
- Conghui Xu
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Maria Talavera
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Stefan Sander
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|