1
|
Oppelt KT, Hamm P. FullThrOTTLE-TrIR: Time-Resolved IR Spectroscopy of Electrochemically Generated Species Using a Full Throughput Optically Transparent Thin-Layer Electrochemical Cell. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16040-16049. [PMID: 39355012 PMCID: PMC11440584 DOI: 10.1021/acs.jpcc.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
An optically transparent thin-layer electrochemical cell with stopped-flow sample transport has been developed for optical-pump infrared-probe transient absorption spectroscopy of prereduced or preoxidized molecules. Time-resolved IR-spectra of Re(bpy)(CO)3X (X = Cl, Br) complexes in different oxidation states are presented as a proof-of-principle application for this combined electrochemical and spectroscopic tool. The excited-state lifetimes and IR-spectroscopic signatures of various oxidation states of the molecule, including follow-up reaction intermediates, are disentangled by kinetic sorting, using lifetime density analysis. The method can be applied to assign and differentiate molecular intermediates in photo- and electrochemical reactions, adding new analytic coordinates to classical FTIR- and UV-vis-spectroelectrochemistry.
Collapse
Affiliation(s)
- Kerstin T. Oppelt
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
2
|
Bunjes O, Hedman D, Rittmeier A, Paul LA, Siewert I, Ding F, Wenderoth M. Making and breaking of chemical bonds in single nanoconfined molecules. SCIENCE ADVANCES 2022; 8:eabq7776. [PMID: 36083910 PMCID: PMC9462694 DOI: 10.1126/sciadv.abq7776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Nanoconfinement of catalytically active molecules is a powerful strategy to control their chemical activity; however, the atomic-scale mechanisms are challenging to identify. In the present study, the site-specific reactivity of a model rhenium catalyst is studied on the subnanometer scale for complexes confined within quasi-one-dimensional molecular chains on the Ag(001) surface by scanning tunneling microscopy. Injection of tunneling electrons causes ligand dissociation in single molecules. Unexpectedly, while half of the complexes show only the dissociation, the confined molecules show also the reverse reaction. On the basis of density functional theory calculations, this drastic difference can be attributed to the limited space in confinement. That is, the split-off ligand adsorbs closer to the molecule and the dissociation causes less structural disruption. Both of these facilitate the reverse reaction. We demonstrate formation and disruption of single chemical bonds of nanoconfined molecules with potential application in molecular data storage.
Collapse
Affiliation(s)
- Ole Bunjes
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Daniel Hedman
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Alexandra Rittmeier
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Lucas A. Paul
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Inke Siewert
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Martin Wenderoth
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Siewert I. Electrochemical CO 2 Reduction Catalyzed by Binuclear LRe 2(CO) 6Cl 2 and LMn 2(CO) 6Br 2 Complexes with an Internal Proton Source. Acc Chem Res 2022; 55:473-483. [PMID: 35077152 DOI: 10.1021/acs.accounts.1c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of certain commodity chemicals, e.g., methanol and acetic acid, relies on CO, which is currently mainly produced by the combustion of carbon or natural gas. Photo- or electrochemical conversion of atmospheric CO2 to CO represents an attractive alternative strategy as this approach is carbon-neutral. Such photo- or electrochemically formed CO can also be used in the Fischer-Tropsch process forming liquid hydrocarbons for energy storage applications. The multiple electroreduction of CO2 is preferably coupled with proton transfer steps as this requires less energy than the single outer-sphere 1e- reduction of CO2.In 1984 and 2011, it was shown that [(Lbpy)Re(CO)3Cl] (1) and [(Lbpy)Mn(CO)3Br] (2), respectively, mediate the electrochemical 2e-/2H+ reduction of CO2 forming CO and water (Lbpy = 2,2'-bipyridine). Since proton management is crucial for catalysis, recently the impact of internal proton sources close to the axial position in such complexes has been investigated. However, binuclear complexes have been used rarely as mediators although it has been shown very early for 1 that electron management is also important: the 2e-/2H+ reduction pathway with 1 exhibits a higher reaction rate than going via the singly reduced species, though the pathway requires a higher overpotential. In this Account, we focus on recent developments of binuclear LMn2(CO)6 and LRe2(CO)6 mediators with an internal phenol group in the electroreduction of CO2. In contrast to mononuclear derivatives, for which the impact of the internal proton source on catalysis is very diverse, we always observed a higher reaction rate and for the Mn complexes also a lower overpotential with the binuclear complexes compared to the mononuclear variants. Spectroscopic, electrochemical, and computational studies on the mono- and binuclear complexes shed light on their reactivity under reductive conditions, elucidated the structure of reduced species, unraveled the kinetics for catalytically productive and unproductive (side) reactions, and allowed us to derive some hypothesis on the CO2 reduction mechanism. Finally, I emphasize that the electrohydrogenation of the polar double bonds by the binuclear complex LMn2(CO)6 with a central phenol unit is not restricted to CO2 but is also applicable to organic compounds with C═O bonds.
Collapse
Affiliation(s)
- Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Zhou QH, Pan MY, He Q, Tang Q, Chow CF, Gong CB. Electrochromic behavior of fac-tricarbonyl rhenium complexes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04955k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tricarbonyl rhenium complex shows good electrochromic performance with a colored stage of green, rapid response and good switching stability.
Collapse
Affiliation(s)
- Qian-hua Zhou
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ming-yue Pan
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qi He
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
5
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
6
|
Kiefer LM, Michocki LB, Kubarych KJ. Transmission Mode 2D-IR Spectroelectrochemistry of In Situ Electrocatalytic Intermediates. J Phys Chem Lett 2021; 12:3712-3717. [PMID: 33835814 DOI: 10.1021/acs.jpclett.1c00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unraveling electrocatalytic mechanisms, as well as fundamental structural dynamics of intermediates, requires spectroscopy with high time and frequency resolution that can account for nonequilibrium in situ concentration changes inherent to electrochemistry. Two-dimensional infrared (2D-IR) spectroscopy is an ideal candidate, but several technical challenges have hindered development of this powerful tool for spectroelectrochemistry (SEC). We demonstrate a transmission-mode, optically transparent thin-layer electrochemical (OTTLE) cell adapted to 2D-IR-SEC to monitor the important Re(bpy)(CO)3Cl CO2-reduction electrocatalyst. 2D-IR-SEC reveals pronounced differences in both spectral diffusion time scales and spectral inhomogeneity in the singly reduced catalyst, [Re(bpy)(CO)3Cl]•-, relative to the starting Re(bpy)(CO)3Cl. Cross-peaks between well-resolved symmetric vibrations and congested low-frequency bands enable direct assignment of all distinct species during the electrochemical reaction. With this information, 2D-IR-SEC provides new mechanistic insights regarding unproductive, catalyst-degrading dimerization. 2D-IR-SEC opens new experimental windows into the electrocatalysis foundation of future energy conversion and greenhouse gas reduction.
Collapse
Affiliation(s)
- Laura M Kiefer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
8
|
Giereth R, Lang P, McQueen E, Meißner X, Braun-Cula B, Marchfelder C, Obermeier M, Schwalbe M, Tschierlei S. Elucidation of Cooperativity in CO2 Reduction Using a Xanthene-Bridged Bimetallic Rhenium(I) Complex. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Robin Giereth
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department Energy Conversion, Institute of Physical and Theoretical Chemistry, TU Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Philipp Lang
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Ewan McQueen
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Xenia Meißner
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Beatrice Braun-Cula
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Carla Marchfelder
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin Obermeier
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department Energy Conversion, Institute of Physical and Theoretical Chemistry, TU Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Mukherjee J, Siewert I. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO
2
Reduction Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000738] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jyotima Mukherjee
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Inke Siewert
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
10
|
Paul LA, Röttcher NC, Zimara J, Borter JH, Du JP, Schwarzer D, Mata RA, Siewert I. Photochemical Properties of Re(CO)3 Complexes with and without a Local Proton Source and Implications for CO2 Reduction Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas A. Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Nico C. Röttcher
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Jennifer Zimara
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jan-Hendrik Borter
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jia-Pei Du
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Universität Göttingen, Institut für Physikalische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|