1
|
De Sciscio ML, Nardi AN, Parisi G, Bulfaro G, Costanzo A, Gugole E, Exertier C, Freda I, Savino C, Vallone B, Montemiglio LC, D’Abramo M. Effect of Salts on the Conformational Dynamics of the Cytochrome P450 OleP. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020832. [PMID: 36677890 PMCID: PMC9867029 DOI: 10.3390/molecules28020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Cytochrome P450 OleP catalytic activity is strongly influenced by its structural dynamic conformational behavior. Here, we combine equilibrium-binding experiments with all-atom molecular dynamics simulations to clarify how different environments affect OleP conformational equilibrium between the open and the closed-catalytic competent-forms. Our data clearly show that at high-ionic strength conditions, the closed form is favored, and, very interestingly, different mechanisms, depending on the chemistry of the cations, can be used to rationalize such an effect.
Collapse
Affiliation(s)
- Maria Laura De Sciscio
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, IIT, 00185 Rome, Italy
| | - Giovanni Bulfaro
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Antonella Costanzo
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Elena Gugole
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| | - Marco D’Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| |
Collapse
|
2
|
Uno Y, Ushirozako G, Uehara S, Murayama N, Fujiki Y, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified tree shrew cytochrome P450 2B6 (CYP2B6) and pig CYP2B6b are functional drug-metabolising enzymes. Xenobiotica 2022; 52:687-696. [PMID: 36286316 DOI: 10.1080/00498254.2022.2141153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tree shrews have high phylogenetic affinity to humans and are used in various fields of biomedical research, especially hepatitis virus infection; however, cytochromes P450 (P450s or CYPs) have not been investigated in this species.In this study, tree shrew CYP2B6 and pig CYP2B6b were newly identified and had amino acid sequences highly identical (80% and 78%, respectively) to human CYP2B6, containing sequence motifs characteristic of P450s.Phylogenetic analysis revealed that novel tree shrew CYP2B6 was more closely related to known human CYP2B6 than dog, pig, or rat CYP2Bs are.Among the tissue types analysed, tree shrew CYP2B6 mRNA was preferentially expressed in liver and lung, whereas pig CYP2B6b mRNA was preferentially expressed in jejunum and lung.Tree shrew CYP2B6 and pig CYP2B6b proteins heterologously expressed in Escherichia coli metabolised human CYP2B6 substrates efavirenz, ethoxycoumarin, propofol, and testosterone, suggesting that these novel CYP2Bs are functional drug-metabolizing enzymes in liver and/or lung.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Genki Ushirozako
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Yuki Fujiki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Kagoshima University, Kagoshima, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
3
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
4
|
Dixit VA, Warwicker J, Visser SP. How Do Metal Ions Modulate the Rate‐Determining Electron‐Transfer Step in Cytochrome P450 Reactions? Chemistry 2020; 26:15270-15281. [DOI: 10.1002/chem.202003024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmacy Birla Institute of Technology and Sciences Pilani (BITS-Pilani) Vidya Vihar Campus 41 Pilani 333031 Rajasthan India
| | - Jim Warwicker
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M17DN United Kingdom
- Department of Chemistry The University of Manchester Oxford Road Manchester M139PL United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M17DN United Kingdom
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL United Kingdom
| |
Collapse
|
5
|
Esteves F, Campelo D, Gomes BC, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. The Role of the FMN-Domain of Human Cytochrome P450 Oxidoreductase in Its Promiscuous Interactions With Structurally Diverse Redox Partners. Front Pharmacol 2020; 11:299. [PMID: 32256365 PMCID: PMC7094780 DOI: 10.3389/fphar.2020.00299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
NADPH cytochrome P450 oxidoreductase (CPR) is the obligatory electron supplier that sustains the activity of microsomal cytochrome P450 (CYP) enzymes. The variant nature of the isoform-specific proximal interface of microsomal CYPs indicates that CPR is capable of multiple degenerated interactions with CYPs for electron transfer, through different binding mechanisms, and which are still not well-understood. Recently, we showed that CPR dynamics allows formation of open conformations that can be sampled by its structurally diverse redox partners in a CYP-isoform dependent manner. To further investigate the role of the CPR FMN-domain in effective binding of CPR to its diverse acceptors and to clarify the underlying molecular mechanisms, five different CPR-FMN-domain random mutant libraries were created. These libraries were screened for mutants with increased activity when combined with specific CYP-isoforms. Seven CPR-FMN-domain mutants were identified, supporting a gain in activity for CYP1A2 (P117H, G144C, A229T), 2A6 (P117L/L125V, G175D, H183Y), or 3A4 (N151D). Effects were evaluated using extended enzyme kinetic analysis, cytochrome b 5 competition, ionic strength effect on CYP activity, and structural analysis. Mutated residues were located either in or adjacent to several acidic amino acid stretches - formerly indicated to be involved in CPR:CYP interactions - or close to two tyrosine residues suggested to be involved in FMN binding. Several of the identified positions co-localize with mutations found in naturally occurring CPR variants that were previously shown to cause CYP-isoform-dependent effects. The mutations do not seem to significantly alter the geometry of the FMN-domain but are likely to cause very subtle alterations leading to improved interaction with a specific CYP. Overall, these data suggest that CYPs interact with CPR using an isoform specific combination of several binding motifs of the FMN-domain.
Collapse
Affiliation(s)
- Francisco Esteves
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana Campelo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Sophie Bozonnet
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Thomas Lautier
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Michel Kranendonk
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Campelo D, Esteves F, Brito Palma B, Costa Gomes B, Rueff J, Lautier T, Urban P, Truan G, Kranendonk M. Probing the Role of the Hinge Segment of Cytochrome P450 Oxidoreductase in the Interaction with Cytochrome P450. Int J Mol Sci 2018; 19:ijms19123914. [PMID: 30563285 PMCID: PMC6321550 DOI: 10.3390/ijms19123914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is the unique redox partner of microsomal cytochrome P450s (CYPs). CPR exists in a conformational equilibrium between open and closed conformations throughout its electron transfer (ET) function. Previously, we have shown that electrostatic and flexibility properties of the hinge segment of CPR are critical for ET. Three mutants of human CPR were studied (S243P, I245P and R246A) and combined with representative human drug-metabolizing CYPs (isoforms 1A2, 2A6 and 3A4). To probe the effect of these hinge mutations different experimental approaches were employed: CYP bioactivation capacity of pre-carcinogens, enzyme kinetic analysis, and effect of the ionic strength and cytochrome b5 (CYB5) on CYP activity. The hinge mutations influenced the bioactivation of pre-carcinogens, which seemed CYP isoform and substrate dependent. The deviations of Michaelis-Menten kinetic parameters uncovered tend to confirm this discrepancy, which was confirmed by CYP and hinge mutant specific salt/activity profiles. CPR/CYB5 competition experiments indicated a less important role of affinity in CPR/CYP interaction. Overall, our data suggest that the highly flexible hinge of CPR is responsible for the existence of a conformational aggregate of different open CPR conformers enabling ET-interaction with structural varied redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bernardo Brito Palma
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - José Rueff
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| |
Collapse
|
7
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
8
|
Brignac-Huber LM, Park JW, Reed JR, Backes WL. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity. Drug Metab Dispos 2016; 44:1859-1866. [PMID: 27233287 PMCID: PMC5118634 DOI: 10.1124/dmd.115.068981] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/26/2016] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains.
Collapse
Affiliation(s)
- Lauren M Brignac-Huber
- Department of Pharmacology and Experimental Therapeutics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Ji Won Park
- Department of Pharmacology and Experimental Therapeutics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - James R Reed
- Department of Pharmacology and Experimental Therapeutics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
9
|
Kudo T, Ozaki Y, Kusano T, Hotta E, Oya Y, Komatsu S, Goda H, Ito K. Effect of buffer conditions on CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolamα- and 4-hydroxylation by human liver microsomes. Xenobiotica 2015; 46:241-6. [DOI: 10.3109/00498254.2015.1071502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
11
|
Di Nardo G, Breitner M, Bandino A, Ghosh D, Jennings GK, Hackett JC, Gilardi G. Evidence for an elevated aspartate pK(a) in the active site of human aromatase. J Biol Chem 2014; 290:1186-96. [PMID: 25425647 DOI: 10.1074/jbc.m114.595108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatase (CYP19A1), the enzyme that converts androgens to estrogens, is of significant mechanistic and therapeutic interest. Crystal structures and computational studies of this enzyme shed light on the critical role of Asp(309) in substrate binding and catalysis. These studies predicted an elevated pK(a) for Asp(309) and proposed that protonation of this residue was required for function. In this study, UV-visible absorption, circular dichroism, resonance Raman spectroscopy, and enzyme kinetics were used to study the impact of pH on aromatase structure and androstenedione binding. Spectroscopic studies demonstrate that androstenedione binding is pH-dependent, whereas, in contrast, the D309N mutant retains its ability to bind to androstenedione across the entire pH range studied. Neither pH nor mutation perturbed the secondary structure or heme environment. The origin of the observed pH dependence was further narrowed to the protonation equilibria of Asp(309) with a parallel set of spectroscopic studies using exemestane and anastrozole. Because exemestane interacts with Asp(309) based on its co-crystal structure with the enzyme, its binding is pH-dependent. Aromatase binding to anastrozole is pH-independent, consistent with the hypothesis that this ligand exploits a distinct set of interactions in the active site. In summary, we assign the apparent pK(a) of 8.2 observed for androstenedione binding to the side chain of Asp(309). To our knowledge, this work represents the first experimental assignment of a pK(a) value to a residue in a cytochrome P450. This value is in agreement with theoretical calculations (7.7-8.1) despite the reliance of the computational methods on the conformational snapshots provided by crystal structures.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Maximilian Breitner
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Andrea Bandino
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Debashis Ghosh
- the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210, and
| | - Gareth K Jennings
- the Department of Physiology and Biophysics and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23219
| | - John C Hackett
- the Department of Physiology and Biophysics and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23219
| | - Gianfranco Gilardi
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy,
| |
Collapse
|
12
|
Wang YH, Gibson CR. Variability in human in vitro enzyme kinetics. Methods Mol Biol 2014; 1113:337-362. [PMID: 24523120 DOI: 10.1007/978-1-62703-758-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below.
Collapse
Affiliation(s)
- Ying-Hong Wang
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, West Point, PA, USA
| | | |
Collapse
|
13
|
Peng HM, Auchus RJ. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries. Arch Biochem Biophys 2013; 541:53-60. [PMID: 24256945 DOI: 10.1016/j.abb.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Davydov DR, Sineva EV, Davydova NY, Bartlett DH, Halpert JR. CYP261 enzymes from deep sea bacteria: a clue to conformational heterogeneity in cytochromes P450. Biotechnol Appl Biochem 2013; 60:30-40. [PMID: 23586990 DOI: 10.1002/bab.1083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/14/2012] [Indexed: 11/12/2022]
Abstract
We have explored the adaptation of the cytochromes P450 (P450) of deep-sea bacteria to high hydrostatic pressures. Strict conservation of the protein fold and functional importance of protein-bound water make P450 a unique subject for the studies of high-pressure adaptation. Earlier, we expressed and purified a fatty-acid binding P450 from the deep-sea bacteria Photobacterium profundum SS9 (CYP261C1). Here, we report purification and initial characterization of its mesophilic ortholog from the shallow-water P. profundum 3TCK (CYP261C2), as well as another piezophilic enzyme, CYP261D1, from deep-sea Moritella sp. PE36. Comparison of the three enzymes revealed a striking peculiarity of the piezophilic enzymes. Both CYP261C1 and CYP261D1 possess an apparent pressure-induced conformational toggle actuated at the pressures commensurate with the physiological pressure of habitation of the host bacteria. Furthermore, in contrast to CYP261C2, the piezophilic CYP261 enzymes may be chromatographically separated into two fractions with different properties, and different thermodynamic parameters of spin equilibrium in particular. According to our concept, the changes in the energy landscape that evolved in pressure-tolerant enzymes must stabilize the less-hydrated, closed conformers, which may be transient in the catalytic mechanisms of nonpiezophilic enzymes. The studies of enzymes of piezophiles should help unravel the mechanisms that control water access during the catalytic cycle.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
15
|
Peng HM, Auchus RJ. The action of cytochrome b(5) on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65. Biochemistry 2012. [PMID: 23193974 DOI: 10.1021/bi301384n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5). Using purified P450, b(5), and reductase (POR) in reconstituted assays, the D58G/D65G double mutation, of residues located in a hydrophilic α-helix of b(5), totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G/D65G double mutation retained the full ability to stimulate the 17,20-lyase activity of CYP17A1. The D58G/D65G double mutation competes poorly with wild-type b(5) for binding to the CYP2E1·POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b(5) stimulation and specificity, particularly for CYP17A1, in the following order: phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. The D58G/D65G double mutation also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas the E48G/E49G double mutation stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b(5). We conclude that b(5) residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that the phospholipid composition significantly influences the b(5)-P450 interaction. At least two surfaces of b(5) differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b(5) alone.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
16
|
An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae. Antimicrob Agents Chemother 2011; 56:391-402. [PMID: 22037849 DOI: 10.1128/aac.05227-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.
Collapse
|
17
|
Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM. Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance. Biochemistry 2010; 49:9190-8. [PMID: 20804175 PMCID: PMC3136391 DOI: 10.1021/bi1013722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanodiscs are examples of discoidal nanoscale lipid-protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical proteins named membrane scaffolding protein (MSP), ~10 nm in size. Nanodiscs are homogeneous, easily prepared with reproducible success, amenable to preparations with a variety of lipids, and stable over a range of temperatures. Here we present solid-state nuclear magnetic resonance (SSNMR) studies on lyophilized, rehydrated POPC Nanodiscs prepared with uniformly (13)C-, (15)N-labeled MSP1D1 (Δ1-11 truncated MSP). Under these conditions, by SSNMR we directly determine the gel-to-liquid crystal lipid phase transition to be at 3 ± 2 °C. Above this phase transition, the lipid (1)H signals have slow transverse relaxation, enabling filtering experiments as previously demonstrated for lipid vesicles. We incorporate this approach into two- and three-dimensional heteronuclear SSNMR experiments to examine the MSP1D1 residues interfacing with the lipid bilayer. These (1)H-(13)C and (1)H-(13)C-(13)C correlation spectra are used to identify and quantify the number of lipid-correlated and solvent-exposed residues by amino acid type, which furthermore is compared with molecular dynamics studies of MSP1D1 in Nanodiscs. This study demonstrates the utility of SSNMR experiments with Nanodiscs for examining lipid-protein interfaces and has important applications for future structural studies of membrane proteins in physiologically relevant formulations.
Collapse
Affiliation(s)
- Aleksandra Kijac
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Amy Y. Shih
- Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrew J. Nieuwkoop
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephen G. Sligar
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Chad M. Rienstra
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
18
|
Warrilow AGS, Jackson CJ, Parker JE, Marczylo TH, Kelly DE, Lamb DC, Kelly SL. Identification, characterization, and azole-binding properties of Mycobacterium smegmatis CYP164A2, a homolog of ML2088, the sole cytochrome P450 gene of Mycobacterium leprae. Antimicrob Agents Chemother 2009; 53:1157-64. [PMID: 19075057 PMCID: PMC2650583 DOI: 10.1128/aac.01237-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/18/2008] [Accepted: 12/07/2008] [Indexed: 01/31/2023] Open
Abstract
The genome sequence of Mycobacterium leprae revealed a single open reading frame, ML2088 (CYP164A1), encoding a putative full-length cytochrome P450 monooxygenase and 12 pseudogenes. We have identified a homolog of ML2088 in Mycobacterium smegmatis and report here the cloning, expression, purification, and azole-binding characteristics of this cytochrome P450 (CYP164A2). CYP164A2 is 1,245 bp long and encodes a protein of 414 amino acids and molecular mass of 45 kDa. CYP164A2 has 60% identity with Mycobacterium leprae CYP161A1 and 66 to 69% identity with eight other mycobacterial CYP164A1 homologs, with three identified highly conserved motifs. Recombinant CYP164A2 has the typical spectral characteristics of a cytochrome P450 monooxygenase, predominantly in the ferric low-spin state. Unusually, the spin state was readily modulated by increasing ionic strength at pH 7.5, with 50% high-spin occupancy achieved with 0.14 M NaCl. CYP164A2 bound clotrimazole, econazole, and miconazole strongly (K(d), 1.2 to 2.5 muM); however, strong binding with itraconazole, ketoconazole, and voriconazole was only observed in the presence of 0.5 M NaCl. Fluconazole did not bind to CYP164A2 at pH 7.5 and no discernible type II binding spectrum was observed.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Institute of Life Science, Swansea University, Swansea, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Huber Iii WJ, Scruggs BA, Backes WL. C-Terminal membrane spanning region of human heme oxygenase-1 mediates a time-dependent complex formation with cytochrome P450 reductase. Biochemistry 2009; 48:190-7. [PMID: 19123922 DOI: 10.1021/bi801912z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the oxidative degradation of heme to biliverdin, carbon monoxide, and free iron in a reaction requiring the interaction of HO-1 with NADPH-cytochrome P450 reductase (CPR). HO-1 is bound to the endoplasmic reticulum by 23 C-terminal amino acids; however, a soluble HO-1 (sHO-1) lacking this membrane spanning region has been extensively studied. The goal of this project was to characterize the effect of the C-terminal hydrophobic domain on formation of the HO-1/CPR complex. Full-length HO-1 was shown to exhibit higher reaction rates than sHO-1, particularly at subsaturating CPR, indicating that the C-terminal region influences HO-1 binding to CPR. The increased activity of HO-1 was attributable to a time-dependent formation of a low K(m) HO-1/CPR complex that was not seen with sHO1. Gel filtration analysis confirmed the formation of multiple high molecular weight complexes in the presence and absence of the synthetic lipid dilauroylphosphatidylcholine (DLPC). However, the largest complex appeared following a 2 h incubation of HO-1 and CPR in DLPC, suggesting that the C-terminal region was required for the high-affinity HO-1/CPR complex formation and membrane incorporation. These data demonstrate that the C-terminal region of HO-1 influenced complex formation and ultimately its affinity for CPR.
Collapse
Affiliation(s)
- Warren J Huber Iii
- Department of Pharmacology and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, Louisiana 70112
| | | | | |
Collapse
|
20
|
Oesch-Bartlomowicz B, Oesch F. Phosphorylation of xenobiotic-metabolizing cytochromes P450. Anal Bioanal Chem 2008; 392:1085-92. [PMID: 18704375 DOI: 10.1007/s00216-008-2315-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/30/2022]
Abstract
The regulation of cytochromes P450 (CYPs) by induction mediated by xenobiotics is well known. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent profound changes in the control of mutagenic and cytotoxic metabolites. Some CYPs are phosphorylated by protein kinase C and some by the cyclic adenosine monophosphate (cAMP) dependent protein kinase A. We found that cAMP not only leads to drastic changes in the activity of individual CYPs, but also drastic changes in the nuclear localization of the CYP-related transcription factor Ah receptor (AHR). The consequences are very different from those of AHR nuclear translocation mediated by its classic ligands (such as dioxin and many polycyclic aromatic hydrocarbons) and may represent the long-sought physiological function of the AHR. The disturbance of this physiological function of AHR by extremely persistent high-affinity xenobiotic ligands such as dioxin may represent the most important contributing factor for their potent toxicity.
Collapse
|
21
|
Kelley RW, Cheng D, Backes WL. Heteromeric complex formation between CYP2E1 and CYP1A2: evidence for the involvement of electrostatic interactions. Biochemistry 2008; 45:15807-16. [PMID: 17176103 PMCID: PMC1994092 DOI: 10.1021/bi061803n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mixed reconstituted systems containing CYP2B4, CYP1A2, and NADPH-cytochrome P450 reductase were previously shown to exhibit a dramatic inhibition of 7-pentoxyresorufin O-dealkylation (PROD) when compared to simple reconstituted systems containing reductase and a single P450 enzyme, results consistent with the formation of CYP1A2-CYP2B4 complexes where the reductase binds with high affinity to the CYP1A2 moiety of the complex. In this report, we provide evidence for an interaction between CYP1A2 and CYP2E1. Synergism of 7-ethoxyresorufin O-deethylation (EROD) and PROD was observed when these P450s were combined in mixed reconstituted systems at subsaturating reductase concentrations. Higher ionic strength attenuated the synergistic stimulation of both PROD and EROD in mixed reconstituted systems, consistent with disruption of heteromeric CYP2E1-CYP1A2 complexes. The effect of ionic strength was further examined as a function of reductase concentration. At lower ionic strength, there was a significant synergistic stimulation of EROD. This synergistic stimulation diminished with increasing reductase concentration, resulting in an additive response as reductase became saturating. Interestingly, at high ionic strength, the synergism of EROD in the mixed reconstituted system was not observed. In contrast, mixed reconstituted systems containing CYP2E1 and CYP2B4 did not provide evidence for the formation of these heteromeric P450-P450 complexes. The synergistic stimulation observed with the reductase-CYP1A2-CYP2E1 mixed reconstituted system is consistent with the formation of a CYP1A2-CYP2E1 complex. Taken together with the lack of a kinetically detectable interaction between CYP2B4 and CYP2E1, and the previously reported CYP1A2-CYP2B4 interaction, these results suggest that CYP1A2 may facilitate the formation of complexes with other P450 enzymes.
Collapse
Affiliation(s)
| | | | - Wayne L. Backes
- * Correspondence should be addressed to: Wayne L. Backes, Ph.D., Department of Pharmacology and the Stanley S. Scott Cancer Center, LSU Health Sciences Center, 533 Bolivar Street, New Orleans, La 70112, Voice 504-568-6557, FAX 504-568-6888, email –
| |
Collapse
|
22
|
Kim KH, Kim DH, Jang HH, Kim M, Kim DH, Kim JS, Kim JI, Chae HZ, Ahn T, Yun CH. Lateral segregation of anionic phospholipids in model membranes induced by cytochrome P450 2B1: bi-directional coupling between CYP2B1 and anionic phospholipid. Arch Biochem Biophys 2007; 468:226-33. [PMID: 17980858 DOI: 10.1016/j.abb.2007.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/02/2007] [Accepted: 10/07/2007] [Indexed: 11/28/2022]
Abstract
The lateral segregation of anionic phospholipids phosphatidic acid (PA), phosphatidylinositol (PI), and phosphatidylserine (PS) was detected after addition of cytochrome P450 2B1 (CYP2B1). The tendency of lipid clustering was highly dependent on the type of anionic phospholipids examined. PA was the most highly clustered while PI and PS clustered to a lesser degree. Moreover, liposomes containing anionic phospholipids form anionic phospholipid-rich microdomains in the presence of CYP2B1. Anionic phospholipids (mostly notably PA) also increased the ability of CYP2B1 to bind to lipid monolayers. In addition to the ability of CYP2B1 to modulate the physical properties of the membrane, the membrane itself can have reciprocal effects on the activity and conformation of CYP2B1. The catalytic activity of CYP2B1 increased as a function of anionic phospholipid concentration and in the presence of 10 mol% PA, the activity increased by 85%. These results suggest a bi-directional coupling between the CYP2B1 and anionic phospholipids.
Collapse
Affiliation(s)
- Keon-Hee Kim
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Johnson DL, Lewis BC, Elliot DJ, Miners JO, Martin LL. Electrochemical characterisation of the human cytochrome P450 CYP2C9. Biochem Pharmacol 2005; 69:1533-41. [PMID: 15857618 DOI: 10.1016/j.bcp.2005.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 02/21/2005] [Indexed: 11/22/2022]
Abstract
The electrochemistry of human cytochrome P4502C9 (CYP2C9) was characterised using purified His-tagged enzyme. The His-tagged enzyme was shown to have similar functional characteristics to native CYP2C9 heterologously expressed in Escherichia coli and to the CYP2C9 activity of human liver microsomes. Evidence was observed for a reversible one-electron transfer between the P450 heme and the electrode. Both pH and ionic strength influenced the electrochemical behaviour of CYP2C9. A range of substrates was investigated to determine the effect of the heme-substrate interaction on CYP2C9 redox potential. In the absence of oxygen, tolbutamide, diclofenac, warfarin and sulfaphenazole did not alter the redox potential of the iron heme. In contrast, torsemide, carbon monoxide and oxygen led to an anodic shift in redox potential. These results suggest alternative mechanisms by which CYP2C9 (and by inference other P450 enzymes) may alter redox potential to facilitate electron delivery from physiological donors.
Collapse
Affiliation(s)
- D L Johnson
- School of Chemistry, Monash University, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
24
|
Kelley RW, Reed JR, Backes WL. Effects of ionic strength on the functional interactions between CYP2B4 and CYP1A2. Biochemistry 2005; 44:2632-41. [PMID: 15709776 PMCID: PMC1993544 DOI: 10.1021/bi0477900] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence of one P450 can influence the catalytic characteristics of a second enzyme through the formation of heteromeric P450 complexes. Such a complex has been reported for mixed reconstituted systems containing NADPH-cytochrome P450 reductase, CYP2B4, and CYP1A2, where a dramatic inhibition of 7-pentoxyresorufin-O-dealkylation (PROD) was observed when compared to simple reconstituted systems containing reductase and a single P450 enzyme. The goal of the present study was to characterize this interaction by examining the potential of the CYP1A2-CYP2B4 complex to be formed by charge-pair interactions. With ionic interactions being sensitive to the surrounding ionic environment, monooxygenase activities were measured in both simple systems and mixed reconstituted systems as a function of ionic strength. PROD was found to be decreased at high ionic strength in both simple and mixed reconstituted systems, due to disruption of reductase-P450 complexes. Additionally, the inhibition of PROD in mixed reconstituted systems was relieved at high ionic strength, consistent with disruption of the CYP2B4-CYP1A2 complex. When ionic strength was measured as a function of CYP1A2 concentration, a shift to the right in the inflection point of the biphasic curve occurred at high ionic strength, consistent with a loss in CYP1A2 affinity for CYP2B4. When this analysis was applied to the same systems using a different substrate, 7-EFC, evidence for a high-affinity complex was not observed, demonstrating that the characteristics of the CYP1A2-CYP2B4 complex are influenced by the substrates present. These results support the role for a substrate specific electrostatic interaction between these P450 enzymes.
Collapse
Affiliation(s)
| | | | - Wayne L. Backes
- * Correspondence should be addressed to: Wayne L. Backes, Ph.D., Department of Pharmacology and Stanley S. Scott Cancer Center, LSU Health Sciences Center, 533 Bolivar Street, New Orleans, La 70112, (504) 568-6557, (504) 843-4585,
| |
Collapse
|
25
|
Kim JS, Yun CH. Inhibition of human cytochrome P450 3A4 activity by zinc(II) ion. Toxicol Lett 2005; 156:341-50. [PMID: 15763633 DOI: 10.1016/j.toxlet.2004.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 12/07/2004] [Accepted: 12/14/2004] [Indexed: 10/26/2022]
Abstract
Effects of Zn2+ on the activity and conformation of cytochorome P450 3A4 (CYP3A4) were investigated. Zn2+ specifically inhibited the testosterone 6beta-hydroxylation activity of CYP3A4 with an IC50 value of 27 microM. Zn2+ inhibited the CO-binding spectra of CYP3A4 reduced by NADPH-cytochrome P450 reductase (CPR) and NADPH only in the presence of b5. Zn2+-induced conformational changes of CYP3A4 were monitored by CD and intrinsic fluorescence. Zn2+ showed no significant effects on the activity of CYP3A4 supported by tert-butyl hydroperoxide, an oxygen surrogate, and on the reduction of b5 by CPR and NADPH. These results suggest that the inhibitory effects of Zn2+ come from preventing the stimulation of b5 on CYP3A4 activity.
Collapse
Affiliation(s)
- Joon-Sik Kim
- AngioLab, Paichai University, Taejon 302-735, Republic of Korea
| | | |
Collapse
|
26
|
Murtazina DA, Andersson U, Hahn IS, Bjorkhem I, Ansari GAS, Pikuleva IA. Phospholipids modify substrate binding and enzyme activity of human cytochrome P450 27A1. J Lipid Res 2004; 45:2345-53. [PMID: 15342675 DOI: 10.1194/jlr.m400300-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 27A1 (P450 27A1) is an important metabolic enzyme involved in bile acid biosynthesis and the activation of vitamin D3 in mammals. Recombinant P450 27A1 heterologously expressed in Escherichia coli was found to be copurified with phospholipids (PLs). The PL content varied in different preparations and was dependent on the purification protocol. A link between the increased amounts of PLs and deterioration of the enzyme substrate binding properties was also observed. Tandem negative ionization mass spectrometry identified phosphatidylglycerol (PG) as the major PL copurified with P450 27A1. Subsequent reconstitution of P450 into exogenous PG vesicles assessed the effect of this contamination on substrate binding and enzyme activity. Two other PLs, phosphatidylethanolamine (PE) and phosphatidylserine (PS), were also tested. PG and PE increased the Kd for 5beta-cholestane-3alpha,7alpha,12alpha-triol and cholesterol binding, whereas PS had no effect on either substrate binding. PG and PE did not significantly alter 5beta-cholestane-3alpha,7alpha,12alpha-triol hydroxylase activity and even stimulated cholesterol hydroxylase activity. PS inhibited 5beta-cholestane-3alpha,7alpha,12alpha-triol hydrolyase activity and had no effect on cholesterol hydroxylase activity. Our study shows the potential for PLs to regulate the activity of P450 27A1 in vivo and alter the amount of cholesterol degraded through the "classical" and "alternative" bile acid biosynthetic pathways.
Collapse
Affiliation(s)
- Dilyara A Murtazina
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | | | | | | | | | | |
Collapse
|
27
|
Oesch-Bartlmowicz B, Oesch F. Modulation of mutagenicity by phosphorylation of mutagen-metabolizing enzymes. Arch Biochem Biophys 2004; 423:31-6. [PMID: 14989261 DOI: 10.1016/j.abb.2003.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this Minireview, we discuss our findings on phosphorylation of cytochromes P450 (CYP) and influence of this modification on metabolic toxification and/or detoxification of a variety of mutagens. We show that phosphorylation drastically interferes with the mutagenicity of several classes of compounds which are of high human relevance (cytostatic drugs of the cyclophosphamide type, aromatic amines/amides, and nitrosamines). We illustrate this by describing the consequences of the stimulation of protein kinase A (with the example of CYP2B1 and CYP2E1), stimulation of protein kinase C, and inhibition of protein phosphatases PP1 and PP2A (with the example of CYP1A1 and CYP1A2). We discuss a possible mechanism governing these phosphorylation events.
Collapse
|
28
|
Abstract
Xenobiotic metabolizing cytochromes P450 (CYP) were shown to be phosphorylated in vitro (using purified protein kinases together with purified CYPs), in intact cells (in V79 cells after transfection of cDNAs coding for individual CYPs, in diagnostic mutants, in hepatocytes), and in whole organisms (rats). CYP phosphorylation is highly isoenzyme selective in that only some CYPs are phosphorylated. Protein kinase A (PKA) was identified as a major catalyst for the phosphorylation of CYPs. The PKA recognition motif Arg-Arg-X-Ser is present in several members of the CYP2 family, but is used by only some of them, most notably by CYP2B1/2B2 and CYP2E1. For CYP2B1 it was shown that a substantial portion but not the entire pool of CYP2B1 molecules is phosphorylated and that the phosphorylated portion is catalytically fully inactive. Phosphorylation of CYPs is a very fast process (visible at the earliest time point experimentally investigated after introduction of phosphorylation-supporting measures, which was 2.5min) and the phosphorylated protein is immediately inactive (i.e., the time curves of phosphorylation and inactivation are superimposable). Thus in contrast to the slower process controlling CYP activities by enzyme induction, CYP phosphorylation controls CYP function like a switch. The physical entity of the switch was identified by site-directed mutation as the phosphoryl acceptor Ser in the PKA recognition motif, which is Ser(138) in CYPs 2B (rat CYP2B1 and rabbit CYP2B4) and its homologous Ser(139) in CYP2E1. The function of this switch was demonstrated for the drastic changes in the control of the genotoxic metabolites of mutagenic carcinogens as well as for the control of effectiveness versus unwanted toxicity of cytostatic cancer drugs.
Collapse
|
29
|
Oesch-Bartlomowicz B, Oesch F. Fast regulation of cytochrome P450 activities by phosphorylation and consequences for drug metabolism and toxicity. Biol Chem 2002; 383:1587-92. [PMID: 12452435 DOI: 10.1515/bc.2002.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In contrast to the well-known regulation of cytochrome P450 (CYP) activity by enzyme induction, which represents a process with slow onset and slow offset, more recent studies revealed phosphorylation as a fast (within observation instantaneous) and isoenzyme-selective regulation. The phosphorylated enzyme (investigated isozyme: CYP2B1) was fully inactive. The phosphorylation is mediated by PKA and hence under control of hormones and drugs that alter cellular cAMP levels. The consequences for the metabolic control of toxic species derived from drugs and environmental carcinogens are discussed. This information will help to improve therapy with drugs metabolized by CYPs which are phosphorylated by PKA, especially if these drugs possess a narrow window between required effectiveness and unacceptable toxicity.
Collapse
|
30
|
Oesch-Bartlomowicz B, Richter B, Becker R, Vogel S, Padma PR, Hengstler JG, Oesch F. cAMP-dependent phosphorylation of CYP2B1 as a functional switch for cyclophosphamide activation and its hormonal control in vitro and in vivo. Int J Cancer 2001; 94:733-42. [PMID: 11745470 DOI: 10.1002/ijc.1517] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An important feature of cytochrome P450 (CYP) 2B1 is its high ability to convert the prodrug cyclophosphamide (CPA) to therapeutically cytotoxic metabolites, resulting in interstrand DNA-cross-linking and cell death. We have examined whether and how the phosphorylation of CYP2B1 influences CPA metabolic activation in vitro and in vivo. We found first that only part of the total CYP2B1 pool undergoes phosphorylation. This part is fully inactivated. Second, phosphorylation of CYP2B1 in intact hepatocytes reduced by up to 75% toxification of CPA to mutagenic metabolites (totally dependent on the same preferentially CYP2B-catalyzed 4-hydroxylation of CPA as is the generation of highly cytotoxic species). Third, the phosphoacceptor-serine 128 of CYP2B1 in the consensus sequence for interaction with the protein kinase A represents an on/off switch for the activation of CPA depending on the phosphorylation conditions in the cell. Fourth, evidence is presented that the above-described events also occur in vivo. In conclusion, a successful therapy with CPA, helped by forced expression of CYP2B1 in tumor cells (as recently proposed) will, in addition, be profoundly modified by its phosphorylation status.
Collapse
|
31
|
Hlavica P, Lewis DF. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4817-32. [PMID: 11559350 DOI: 10.1046/j.1432-1327.2001.02412.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of monooxygenase activity is shown to occur with diverse cytochrome P450 isoforms and is characterized by kinetic patterns deviating from the Michaelis-Menten model. Homotropic and heterotropic phenomena are encountered in both substrate activation and productive coupling of the electron donors NADPH-cytochrome P450 reductase and cytochrome b5, and the lipid environment of the system also appears to play a role as an effector. Circumstantial analysis reveals the components of the electron transfer chain to be mutually beneficial in interactions with each other depending on the substrate used and type of cytochrome P450 operative. It is noteworthy that association of diatomic gaseous ligands may be amenable to allosteric regulation as well. Thus, dioxygen binding to cytochrome P450 displays nonhyperbolic kinetic profiles in the presence of certain substrates; the latter, together with redox proteins such as cytochrome b5, can exert efficient control of the abortive breakdown of the oxyferrous intermediates formed. Similarly, substrates may modulate the structural features of the access channel for solutes such as carbon monoxide in specific cytochrome P450 isozymes to either facilitate or impair ligand diffusion to the heme iron. The in vivo importance of allosteric regulation of enzyme activity is discussed in detail.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| | | |
Collapse
|
32
|
Ivanov YD, Kanaeva IP, Gnedenko OV, Pozdnev VF, Shumyantseva VV, Samenkova NF, Kuznetsova GP, Tereza AM, Schmid RD, Archakov AI. Optical biosensor investigation of interactions of biomembrane and water-soluble cytochromes P450 and their redox partners with covalently immobilized phosphatidylethanolamine layers. J Mol Recognit 2001; 14:185-96. [PMID: 11391789 DOI: 10.1002/jmr.532] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A phospholipid-containing biochip was created by covalently immobilizing phospholipids on the optical biosensor's aminosilane cuvette and employed to monitor the interactions of the membrane and water-soluble proteins in cytochrome P450-containing monooxygenase systems with planary layers of dilauroylphosphatidylethanolamine (DLPE) and distearoylphosphatidylethanolamine (DSPE), differing in acyl chain length. It was shown that the full-length membrane proteins-cytochrome P4502B4 (d-2B4), cytochrome b5 (d-b5) and NADPH-cytochrome P450 reductase (d-Fp)-readily incorporated into the phospholipids. The incorporation was largely due to hydrophobic interactions of membranous protein fragments with the phospholipid layer. However, electrostatic forces were also but not always involved in the incorporation process. They promoted d-Fp incorporation but had no effect on d-b5 incorporation. In low ionic strength buffer, no incorporation of these two proteins into the DSPE lipid layer was observable. Incorporation of d-b5 into the DLPE layer was abruptly increased at temperatures exceeding phospholipid phase transition point. Incorporation of d-2B4 was dependent on its aggregation state and decreased with increasing protein aggregability. Water-soluble proteins either would not interact with the phospholipid layer (adrenodoxin) or would bind to the layer at the cost of only electrostatic (albumin) or both electrostatic and hydrophobic (P450cam) interactions.
Collapse
Affiliation(s)
- Y D Ivanov
- Institute of Biomedical Chemistry RAMS, Moscow 119832, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|