van der Westhuizen FH, Pretorius PJ, Erasmus E. The utilization of alanine, glutamic acid, and serine as amino acid substrates for glycine N-acyltransferase.
J Biochem Mol Toxicol 2000;
14:102-9. [PMID:
10630424 DOI:
10.1002/(sici)1099-0461(2000)14:2<102::aid-jbt6>3.0.co;2-h]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conjugation of benzoyl-CoA with the aliphatic and acidic amino acids by glycine N-acyltransferase, as well as the amides of the latter group, was investigated. Bovine and human liver benzoyl-amino acid conjugation were investigated using electrospray ionization tandem mass spectrometry (ESI-MS-MS). Bovine glycine N-acyltransferase catalyzed conjugation of benzoyl-CoA with Gly (Km(Gly) = 6.2 mM), Asn (Km(Asn) = 129 mM), Gln (Km(Gln) = 353 mM), Ala (Km(Ala) = 1573 mM), Glu (Km(Glu) = 1148 mM) as well as Ser in a sequential mechanism. In the case of the human form, conjugation with Gly (Km(Gly) = 6.4 mM), Ala (Km(Ala) = 997 mM), and Glu was detected. The presence of these alternative conjugates did not inhibit bovine glycine N-acyltransferase activity significantly. Considering the relatively low levels at which these conjugates are formed, it is unlikely that they will have a significant contribution to acyl-amino acid conjugation under normal conditions in vivo. However, their cumulative contribution to acyl-amino acid conjugation under metabolic disease states may prove to have a useful contribution to detoxification of elevated acyl-CoAs.
Collapse