1
|
Mönnich M, Eller S, Karagiannis T, Perkams L, Luber T, Ott D, Niemietz M, Hoffman J, Walcher J, Berger L, Pischl M, Weishaupt M, Wirkner C, Lichtenstein RG, Unverzagt C. Hocheffiziente Synthese von multiantennären “bisected” N-Glycanen über Imidate. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manuel Mönnich
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Steffen Eller
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | | | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Thomas Luber
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Dimitri Ott
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Mathäus Niemietz
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Joanna Hoffman
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Janika Walcher
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Lukas Berger
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Matthias Pischl
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Markus Weishaupt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Cathrin Wirkner
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Rachel G. Lichtenstein
- Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| |
Collapse
|
2
|
Mönnich M, Eller S, Karagiannis T, Perkams L, Luber T, Ott D, Niemietz M, Hoffman J, Walcher J, Berger L, Pischl M, Weishaupt M, Wirkner C, Lichtenstein RG, Unverzagt C. Highly Efficient Synthesis of Multiantennary Bisected N-glycans Based on Imidates. Angew Chem Int Ed Engl 2016; 55:10487-92. [PMID: 27443163 DOI: 10.1002/anie.201604190] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/11/2022]
Abstract
The occurrence of N-glycans with a bisecting GlcNAc modification on glycoproteins has many implications in developmental and immune biology. However, these particular N-glycans are difficult to obtain either from nature or through synthesis. We have developed a flexible and general method for synthesizing bisected N-glycans of the complex type by employing modular TFAc-protected donors for all antennae. The TFAc-protected N-glycans are suitable for the late introduction of a bisecting GlcNAc. This integrated strategy permits for the first time the use of a single approach for multiantennary N-glycans as well as their bisected derivatives via imidates, with unprecedented yields even in a one-pot double glycosylation. With this new method, rare N-glycans of the bisected type can be obtained readily, thereby providing defined tools to decipher the biological roles of bisecting GlcNAc modifications.
Collapse
Affiliation(s)
- Manuel Mönnich
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Steffen Eller
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | | | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Thomas Luber
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Dimitri Ott
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Mathäus Niemietz
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Joanna Hoffman
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Janika Walcher
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Lukas Berger
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Matthias Pischl
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Markus Weishaupt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Cathrin Wirkner
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Rachel G Lichtenstein
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
3
|
Abualassal Q, Al Azzam KM, Jilani JA. Regioselective deprotection of the monosaccharide-bearing thiocyanomethyl group at the anomeric position monitored by reversed-phase HPLC method. Biomed Chromatogr 2016; 30:1416-22. [DOI: 10.1002/bmc.3699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
| | - Khaldun M. Al Azzam
- Department of Pharmaceutical Chemistry, Pharmacy Program; Batterjee Medical College for Sciences and Technology; 21442 Jeddah Kingdom of Saudi Arabia
| | - Jamal A. Jilani
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy; Jordan University of Science and Technology; 22110 Irbid Jordan
| |
Collapse
|
4
|
Brooks SA. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins. Expert Rev Proteomics 2014; 3:345-59. [PMID: 16771706 DOI: 10.1586/14789450.3.3.345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A major challenge for the biotechnology industry is to engineer the glycosylation pathways of expression systems to synthesize recombinant proteins with human glycosylation. Inappropriate glycosylation can result in reduced activity, limited half-life in circulation and unwanted immunogenicity. In this review, the complexities of glycosylation in human cells are explained and compared with glycosylation in bacteria, yeasts, fungi, insects, plants and nonhuman mammalian species. Key advances in the engineering of the glycosylation of expression systems are highlighted. Advances in the challenging and technically complex field of glycan analysis are also described. The emergence of a new generation of expression systems with sophisticated engineering for humanized glycosylation of glycoproteins appears to be on the horizon.
Collapse
Affiliation(s)
- Susan A Brooks
- Oxford Brookes University, School of Biological & Molecular Sciences, Gipsy Lane, Headington, Oxford, OX3 0BP, UK.
| |
Collapse
|
5
|
Ghadban A, Albertin L, Moussavou Mounguengui RW, Peruchon A, Heyraud A. Synthesis of β-d-glucopyranuronosylamine in aqueous solution: kinetic study and synthetic potential. Carbohydr Res 2011; 346:2384-93. [DOI: 10.1016/j.carres.2011.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|
6
|
Bavaro T, Filice M, Bonomi P, Abu alassal Q, Speranza G, Guisan JM, Terreni M. Regioselective Deprotection of Peracetylated Disaccharides at the Primary Position Catalyzed by Immobilized Acetyl Xylan Esterase from Bacillus pumilus. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100944] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Ghadban A, Albertin L, Condamine E, Mounguengui RWM, Heyraud A. NMR and MS study of the formation of β-d-glucopyranosylamine uronic acid in aqueous solution. CAN J CHEM 2011. [DOI: 10.1139/v11-064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The products of the reaction of d-glucuronic acid with various combinations of ammonia and volatile ammonium salts in water were studied by NMR and MS spectroscopy. For long reaction times (~24 h), the expected products β-d-glucopyranosylamine uronic acid and ammonium N-(β-d-glucopyranosyluronic acid)carbamate were obtained in good-to-high yield, whereas seven intermediate species were identified in samples taken at earlier reaction times. 1H–1H homonuclear and 1H–13C heteronuclear correlation experiments enabled a complete assignment of the 1H and 13C NMR spectra of the starting and final compounds, and a partial assignment of the peaks of intermediate species. Based on these results, a 1H NMR protocol for the quantification of the different compounds taking part in the reaction was developed, which was used to monitor the evolution of the composition of an early reaction sample redissolved in D2O. It was thus established that two of the observed intermediate species are actually the α anomer of the main products, whereas the others are precursors to the formation of α/β-d-glucopyranosylamine uronic acid and ammonium N-(α/β-d-glucopyranosyluronic acid)carbamate. The correct assignments for the 1H and 13C spectra of d-glucuronic acid in D2O are also reported.
Collapse
Affiliation(s)
- Ali Ghadban
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble CEDEX 9, France
| | - Luca Albertin
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble CEDEX 9, France
| | - Eric Condamine
- Institut de Biologie Structurale “Jean-Pierre Ebel”, UMR5075 (CEA/CNRS/UJF), 41 rue Jules Horowitz, 38027 Grenoble, France
| | | | - Alain Heyraud
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble CEDEX 9, France
| |
Collapse
|
8
|
Lu Z, Ding N, Zhang W, Wang P, Li Y. A convenient synthesis of the core trisaccharide of the N-glycans. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Eller S, Raps C, Niemietz M, Unverzagt C. Convenient introduction of a bisecting GlcNAc residue into multiantennary N-glycans as the ultimate residue. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Unverzagt C, Gundel G, Eller S, Schuberth R, Seifert J, Weiss H, Niemietz M, Pischl M, Raps C. Synthesis of multiantennary complex type N-glycans by use of modular building blocks. Chemistry 2010; 15:12292-302. [PMID: 19806620 DOI: 10.1002/chem.200901908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A modular set of oligosaccharide building blocks was developed for the synthesis of multiantennary N-glycans of the complex type, which are commonly found on glycoproteins. The donor building blocks were laid out for the elongation of a core trisaccharide acceptor (beta-mannosyl chitobiose) conveniently protected with a single benzylidene moiety at the beta-mannoside. Through two consecutive regio- and stereoselective couplings the donors gave N-glycans with three to five antennae in high yields. Due to the consistent protection group pattern of the donors the deprotection of the final products can be performed by using a general reaction sequence.
Collapse
Affiliation(s)
- Carlo Unverzagt
- Bioorganische Chemie, Universität Bayreuth, Gebäude NW1, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Barb AW, Borgert AJ, Liu M, Barany G, Live D. Intramolecular glycan-protein interactions in glycoproteins. Methods Enzymol 2010; 478:365-88. [PMID: 20816490 DOI: 10.1016/s0076-6879(10)78018-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycoproteins are a major class of glycoconjugates displaying a variety of mutual interactions between glycan and protein moieties that ultimately affect molecular organization. Modulation of the pendant glycan structures is important in tuning the functions of glycoproteins. Here we discuss structural aspects and some of the challenges to studying intramolecular interactions between carbohydrate and protein elements in several forms of O-linked as well as N-linked glycoproteins. These illustrate the importance of the relationship of context to function in protein glycosylation.
Collapse
Affiliation(s)
- Adam W Barb
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Gemma E, Meyer O, Uhrín D, Hulme AN. Enabling methodology for the end functionalization of glycosaminoglycan oligosaccharides. MOLECULAR BIOSYSTEMS 2008; 4:481-95. [PMID: 18493641 DOI: 10.1039/b801666f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The chemical functionalization of glycosaminoglycans is very challenging due to their structural heterogeneity and polyanionic character; but as an enabling technology it promises rich rewards in terms of the structural and biological data it will afford. This review surveys the known methods for the preparation of glycosaminoglycan oligosaccharides and conditions for the selective functionalization of both the reducing and non-reducing ends. The synthetic merits of each approach are discussed, together with the structural modification of the glycosaminoglycan oligosaccharide which they confer. Recent applications of this methodology are highlighted, including introduction of functional labels for gel mobility shift assays and NMR studies of glycosaminoglycan-protein complexes, and synthesis of immobilised glycosaminoglycan arrays.
Collapse
Affiliation(s)
- Emiliano Gemma
- School of Chemistry, The University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, UK
| | | | | | | |
Collapse
|
14
|
Unverzagt C, Eller S, Mezzato S, Schuberth R. A Double Regio- and Stereoselective Glycosylation Strategy for the Synthesis of N-Glycans. Chemistry 2008; 14:1304-11. [DOI: 10.1002/chem.200701251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
ZHANG Y, HUANG LJ, WANG ZF. A Sensitive Derivatization Method for the Determination of the Sugar Composition after Pre-column Reductive Amination with 3-Amino-9-ethylcarbazole (AEC) by High-Performance Liquid Chromatography. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Eller S, Schuberth R, Gundel G, Seifert J, Unverzagt C. Synthese von pentaantennären N-Glycanen mit Bisecting-GlcNAc und Core-Fucose. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604788] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Eller S, Schuberth R, Gundel G, Seifert J, Unverzagt C. Synthesis of Pentaantennary N-Glycans with Bisecting GlcNAc and Core Fucose. Angew Chem Int Ed Engl 2007; 46:4173-5. [PMID: 17444542 DOI: 10.1002/anie.200604788] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Steffen Eller
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | | |
Collapse
|
18
|
Alvarez-Manilla G, Warren NL, Abney T, Atwood J, Azadi P, York WS, Pierce M, Orlando R. Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 2007; 17:677-87. [PMID: 17384119 DOI: 10.1093/glycob/cwm033] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analysis of oligosaccharides by mass spectrometry (MS) has enabled the investigation of the glycan repertoire of organisms with high resolution and sensitivity. It is difficult, however, to correlate the expression of glycosyltransferases with the glycan structures present in a particular cell type or tissue because the use of MS for quantitative purposes has significant limitations. For this reason, in order to develop a technique that would allow relative glycan quantification by MS analysis between two samples, a procedure was developed for the isotopic labeling of oligosaccharides with (13)C-labeled methyl iodide using standard permethylation conditions. Separate aliquots of oligosaccharides from human milk were labeled with (12)C or (13)C methyl iodide; the labeled and non-labeled glycans were mixed in known proportions, and the mixtures analyzed by MS. Results indicated that the isotopic labeling described here was capable of providing relative quantitative data with a dynamic range of at least two orders of magnitude, adequate linearity, and reproducibility with a coefficient of variation that was 13% on average. This procedure was used to analyze N-linked glycans released from various mixtures of glycoproteins, such as alpha-1 acid glycoprotein, human transferrin, and bovine fetuin, using MS techniques that included matrix assisted laser desorption ionization-time of flight MS and electrospray ionization with ion cyclotron resonance-Fourier transformation MS. The measured (12)C:(13)C ratios from mixtures of glycans permethylated with either (12)CH(3)I or (13)CH(3)I were consistent with the theoretical proportions. This technique is an effective procedure for relative quantitative glycan analysis by MS.
Collapse
Affiliation(s)
- Gerardo Alvarez-Manilla
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ishii T, Ichita J, Matsue H, Ono H, Maeda I. Fluorescent labeling of pectic oligosaccharides with 2-aminobenzamide and enzyme assay for pectin. Carbohydr Res 2002; 337:1023-32. [PMID: 12039543 DOI: 10.1016/s0008-6215(02)00087-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oligogalacturonides [oligomers composed of (1-->4)-linked alpha-D-galactosyluronic acid residues] with degrees of polymerization (DP) from 1 to 10, and a tri-, penta-, and heptasaccharide generated from the backbone of rhamnogalacturonan I (RG-I) were labeled at their reducing ends using aqueous 2-aminobenzamide (2AB) in the presence of sodium cyanoborohydride in over 90% yield. These derivatives were analyzed by high-performance anion-exchange chromatography (HPAEC) and structurally characterized by electrospray-ionization mass spectrometry (ESIMS) and by 1H and 13C NMR spectroscopy. The 2AB-labeled oligogalacturonides and RG-I oligomers are fragmented by endo- and exo-polygalacturonase and by Driselase, respectively. 2AB-labeled oligogalacturonide is an exogenous acceptor for galacturonosyltransferase of transferring galacturonic acid from UDP-GalA. Thus, the 2AB-labeled oligogalacturonides and RG-I oligomers are useful for studying enzymes involved in pectin degradation and biosynthesis and may be of value in determining the biological functions of pectic fragments in plants.
Collapse
Affiliation(s)
- Tadashi Ishii
- Forestry and Forest Products Research Institute, PO Box 16, Tsukuba, Norin Kenkyu, Danchi-nai, Ibaraki 305-8687, Japan.
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- K G Rice
- Department of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, USA.
| |
Collapse
|