1
|
Schmith A, Spaller T, Gaube F, Fransson Å, Boesler B, Ojha S, Nellen W, Hammann C, Söderbom F, Winckler T. A host factor supports retrotransposition of the TRE5-A population in Dictyostelium cells by suppressing an Argonaute protein. Mob DNA 2015; 6:14. [PMID: 26339297 PMCID: PMC4559204 DOI: 10.1186/s13100-015-0045-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022] Open
Abstract
Background In the compact and haploid genome of Dictyostelium discoideum control of transposon activity is of particular importance to maintain viability. The non-long terminal repeat retrotransposon TRE5-A amplifies continuously in D. discoideum cells even though it produces considerable amounts of minus-strand (antisense) RNA in the presence of an active RNA interference machinery. Removal of the host-encoded C-module-binding factor (CbfA) from D. discoideum cells resulted in a more than 90 % reduction of both plus- and minus-strand RNA of TRE5-A and a strong decrease of the retrotransposition activity of the cellular TRE5-A population. Transcriptome analysis revealed an approximately 230-fold overexpression of the gene coding for the Argonaute-like protein AgnC in a CbfA-depleted mutant. Results The D. discoideum genome contains orthologs of RNA-dependent RNA polymerases, Dicer-like proteins, and Argonaute proteins that are supposed to represent RNA interference pathways. We analyzed available mutants in these genes for altered expression of TRE5-A. We found that the retrotransposon was overexpressed in mutants lacking the Argonaute proteins AgnC and AgnE. Because the agnC gene is barely expressed in wild-type cells, probably due to repression by CbfA, we employed a new method of promoter-swapping to overexpress agnC in a CbfA-independent manner. In these strains we established an in vivo retrotransposition assay that determines the retrotransposition frequency of the cellular TRE5-A population. We observed that both the TRE5-A steady-state RNA level and retrotransposition rate dropped to less than 10 % of wild-type in the agnC overexpressor strains. Conclusions The data suggest that TRE5-A amplification is controlled by a distinct pathway of the Dictyostelium RNA interference machinery that does not require RNA-dependent RNA polymerases but involves AgnC. This control is at least partially overcome by the activity of CbfA, a factor derived from the retrotransposon’s host. This unusual regulation of mobile element activity most likely had a profound effect on genome evolution in D. discoideum. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0045-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anika Schmith
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Thomas Spaller
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Friedemann Gaube
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Åsa Fransson
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Uppsala, Sweden ; Present address: Aprea AB, Karolinska Institutet Science Park, Nobels väg 3, 17175 Solna, Sweden
| | - Benjamin Boesler
- Institute of Biology - Genetics, University of Kassel, Kassel, Germany
| | - Sandeep Ojha
- Ribogenetics@Biochemistry Lab, Department of Life Sciences and Chemistry, Molecular Life Sciences Research Center, Jacobs University Bremen, Bremen, Germany
| | - Wolfgang Nellen
- Institute of Biology - Genetics, University of Kassel, Kassel, Germany ; Present address: Department of Biology, Brawijaya University, Jl. Veteran, Malang, East Java Indonesia
| | - Christian Hammann
- Ribogenetics@Biochemistry Lab, Department of Life Sciences and Chemistry, Molecular Life Sciences Research Center, Jacobs University Bremen, Bremen, Germany
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Thomas Winckler
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| |
Collapse
|
2
|
Conserved gene regulatory function of the carboxy-terminal domain of dictyostelid C-module-binding factor. EUKARYOTIC CELL 2013; 12:460-8. [PMID: 23355006 DOI: 10.1128/ec.00329-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C-module-binding factor A (CbfA) is a jumonji-type transcription regulator that is important for maintaining the expression and mobility of the retrotransposable element TRE5-A in the social amoeba Dictyostelium discoideum. CbfA-deficient cells have lost TRE5-A retrotransposition, are impaired in the ability to feed on bacteria, and do not enter multicellular development because of a block in cell aggregation. In this study, we performed Illumina RNA-seq of growing CbfA mutant cells to obtain a list of CbfA-regulated genes. We demonstrate that the carboxy-terminal domain of CbfA alone is sufficient to mediate most CbfA-dependent gene expression. The carboxy-terminal domain of CbfA from the distantly related social amoeba Polysphondylium pallidum restored the expression of CbfA-dependent genes in the D. discoideum CbfA mutant, indicating a deep conservation in the gene regulatory function of this domain in the dictyostelid clade. The CbfA-like protein CbfB displays ∼25% sequence identity with CbfA in the amino-terminal region, which contains a JmjC domain and two zinc finger regions and is thought to mediate chromatin-remodeling activity. In contrast to CbfA proteins, where the carboxy-terminal domains are strictly conserved in all dictyostelids, CbfB proteins have completely unrelated carboxy-terminal domains. Outside the dictyostelid clade, CbfA-like proteins with the CbfA-archetypical JmjC/zinc finger arrangement and individual carboxy-terminal domains are prominent in filamentous fungi but are not found in yeasts, plants, and metazoans. Our data suggest that two functional regions of the CbfA-like proteins evolved at different rates to allow the occurrence of species-specific adaptation processes during genome evolution.
Collapse
|
3
|
Lucas J, Bilzer A, Moll L, Zündorf I, Dingermann T, Eichinger L, Siol O, Winckler T. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity. PLoS One 2009; 4:e5012. [PMID: 19343174 PMCID: PMC2661138 DOI: 10.1371/journal.pone.0005012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/04/2009] [Indexed: 11/18/2022] Open
Abstract
The C-module-binding factor (CbfA) is a multidomain protein that belongs to the family of jumonji-type (JmjC) transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF) motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD). An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.
Collapse
Affiliation(s)
- Jörg Lucas
- School of Biology and Pharmacy, Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Jena, Germany
| | - Annika Bilzer
- School of Biology and Pharmacy, Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Jena, Germany
| | - Lorna Moll
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ilse Zündorf
- Institute of Pharmaceutical Biology, University of Frankfurt, Frankfurt am Main, Germany
| | - Theodor Dingermann
- Institute of Pharmaceutical Biology, University of Frankfurt, Frankfurt am Main, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Oliver Siol
- School of Biology and Pharmacy, Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Jena, Germany
| | - Thomas Winckler
- School of Biology and Pharmacy, Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
4
|
Protein interactions involved in tRNA gene-specific integration of Dictyostelium discoideum non-long terminal repeat retrotransposon TRE5-A. Mol Cell Biol 2007; 27:8492-501. [PMID: 17923679 DOI: 10.1128/mcb.01173-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mobile genetic elements that reside in gene-dense genomes face the problem of avoiding devastating insertional mutagenesis of genes in their host cell genomes. To meet this challenge, some Saccharomyces cerevisiae long terminal repeat (LTR) retrotransposons have evolved targeted integration at safe sites in the immediate vicinity of tRNA genes. Integration of yeast Ty3 is mediated by interactions of retrotransposon protein with the tRNA gene-specific transcription factor IIIB (TFIIIB). In the genome of the social amoeba Dictyostelium discoideum, the non-LTR retrotransposon TRE5-A integrates approximately 48 bp upstream of tRNA genes, yet little is known about how the retrotransposon identifies integration sites. Here, we show direct protein interactions of the TRE5-A ORF1 protein with subunits of TFIIIB, suggesting that ORF1p is a component of the TRE5-A preintegration complex that determines integration sites. Our results demonstrate that evolution has put forth similar solutions to prevent damage of diverse, compact genomes by different classes of mobile elements.
Collapse
|
5
|
Winckler T, Szafranski K, Glöckner G. Transfer RNA gene-targeted integration: an adaptation of retrotransposable elements to survive in the compact Dictyostelium discoideum genome. Cytogenet Genome Res 2005; 110:288-98. [PMID: 16093681 DOI: 10.1159/000084961] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 10/10/2003] [Indexed: 11/19/2022] Open
Abstract
Almost every organism carries along a multitude of molecular parasites known as transposable elements (TEs). TEs influence their host genomes in many ways by expanding genome size and complexity, rearranging genomic DNA, mutagenizing host genes, and altering transcription levels of nearby genes. The eukaryotic microorganism Dictyostelium discoideum is attractive for the study of fundamental biological phenomena such as intercellular communication, formation of multicellularity, cell differentiation, and morphogenesis. D. discoideum has a highly compacted, haploid genome with less than 1 kb of genomic DNA separating coding regions. Nevertheless, the D. discoideum genome is loaded with 10% of TEs that managed to settle and survive in this inhospitable environment. In depth analysis of D. discoideum genome project data has provided intriguing insights into the evolutionary challenges that mobile elements face when they invade compact genomes. Two different mechanisms are used by D. discoideum TEs to avoid disruption of host genes upon retrotransposition. Several TEs have invented the specific targeting of tRNA gene-flanking regions as a means to avoid integration into coding regions. These elements have been dispersed on all chromosomes, closely following the distribution of tRNA genes. By contrast, TEs that lack bona fide integration specificities show a strong bias to nested integration, thus forming large TE clusters at certain chromosomal loci that are hardly resolved by bioinformatics approaches. We summarize our current view of D. discoideum TEs and present new data from the analysis of the complete sequences of D. discoideum chromosomes 1 and 2, which comprise more than one third of the total genome.
Collapse
Affiliation(s)
- T Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt am Main (Biozentrum), Frankfurt, Germany.
| | | | | |
Collapse
|
6
|
Beck P, Dingermann T, Winckler T. Transfer RNA gene-targeted retrotransposition of Dictyostelium TRE5-A into a chromosomal UMP synthase gene trap. J Mol Biol 2002; 318:273-85. [PMID: 12051837 DOI: 10.1016/s0022-2836(02)00097-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of the eukaryotic microorganism Dictyostelium discoideum hosts a family of seven non-long terminal repeat retrotransposons (TREs) that show remarkable insertion preferences near tRNA genes. We developed an in vivo assay to detect tRNA gene-targeted retrotransposition of endogenous TREs in a reporter strain of D. discoideum. A tRNA gene positioned within an artificial intron was placed into the D. discoideum UMP synthase gene. This construct was inserted into the D. discoideum genome and presented as a landmark for de novo TRE insertions. We show that the tRNA gene-tagged UMP synthase gene was frequently disrupted by de novo insertions of endogenous TRE5-A copies, thus rendering the resulting mutants resistant to 5-fluoroorotic acid selection. Approximately 96% of all isolated 5-FOA-resistant clones contained TRE5-A insertions, whereas the remaining 4% resulted from transposition-independent mutations. The inserted TRE5-As showed complex structural variations and were found about 50 bp upstream of the reporter tRNA gene, similar to previously analysed genomic copies of TRE5-A. No integration by other members of the TRE family was observed. We found that only 51% of the de novo insertions were derived from autonomous TRE5-A.1 copies. The remaining 49% of new insertions were due to TRE5-A.2 elements, which lack the proteins required for reverse transcription and integration, but retain functional promoter sequences.
Collapse
Affiliation(s)
- Peter Beck
- Institut für Pharmazeutische Biologie, Universität Frankfurt/M. (Biozentrum), Marie-Curie-Strasse 9 D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|