Feng Y, Vickers TA, Cohen SN. The catalytic domain of RNase E shows inherent 3' to 5' directionality in cleavage site selection.
Proc Natl Acad Sci U S A 2002;
99:14746-51. [PMID:
12417756 PMCID:
PMC137490 DOI:
10.1073/pnas.202590899]
[Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNase E, a multifunctional endoribonuclease of Escherichia coli, attacks substrates at highly specific sites. By using synthetic oligoribonucleotides containing repeats of identical target sequences protected from cleavage by 2'-O-methylated nucleotide substitutions at specific positions, we investigated how RNase E identifies its cleavage sites. We found that the RNase E catalytic domain (i.e., N-Rne) binds selectively to 5'-monophosphate RNA termini but has an inherent mode of cleavage in the 3' to 5' direction. Target sequences made uncleavable by the introduction of 2'-O-methyl-modified nucleotides bind to RNase E and impede cleavages at normally susceptible sites located 5' to, but not 3' to, the protected target. Our results indicate that RNase E can identify cleavage sites by a 3' to 5' "scanning" mechanism and imply that anchoring of the enzyme to the 5'-monophosphorylated end of these substrates orients the enzyme for directional cleavages that occur in a processive or quasiprocessive mode. In contrast, we find that RNase G, which has extensive structural homology with and size similarity to N-Rne, and can functionally complement RNase E gene deletions when overexpressed, has a nondirectional and distributive mode of action.
Collapse