1
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Kim AL, Athar M, Bickers DR, Gautier J. Stage-specific Alterations of Cyclin Expression During UVB-induced Murine Skin Tumor Development¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750058ssaoce2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Bao H, Wang X, Yu H, Fu M, Qu X, Zheng Y, Ren J. Physical and spectral characterization of the human cyclin A gene and its interactions with anthracycline anticancer drugs. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.01.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Hong C, Maunakea A, Jun P, Bollen AW, Hodgson JG, Goldenberg DD, Weiss WA, Costello JF. Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res 2005; 65:3617-23. [PMID: 15867356 DOI: 10.1158/0008-5472.can-05-0048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumors arise in part from the deleterious effects of genetic and epigenetic mechanisms on gene expression. In several mouse models of human tumors, the tumorigenic phenotype is reversible, suggesting that epigenetic mechanisms also contribute significantly to tumorigenesis in mice. It is not known whether these are the same epigenetic mechanisms in human and mouse tumors or whether they affect homologous genes. Using an integrated approach for genome-wide methylation and copy number analyses, we identified SLC5A8 on chromosome 12q23.1 that was affected frequently by aberrant methylation in human astrocytomas and oligodendrogliomas. SLC5A8 encodes a sodium monocarboxylate cotransporter that was highly expressed in normal brain but was significant down-regulated in primary gliomas. Bisulfite sequencing analysis showed that the CpG island was unmethylated in normal brain but frequently localized methylated in brain tumors, consistent with the tumor-specific loss of gene expression. In glioma cell lines, SLC5A8 expression was also suppressed but could be reactivated with a methylation inhibitor. Expression of exogenous SLC5A8 in LN229 and LN443 glioma cells inhibited colony formation, suggesting that it may function as a growth suppressor in normal brain cells. Remarkably, 9 of 10 murine oligodendroglial tumors (from p53+/- or ink4a/arf+/- animals transgenic for S100beta-v-erbB) showed a similar tumor-specific down-regulation of mSLC5A8, the highly conserved mouse homologue. Taken together, these data suggest that SLC5A8 functions as a growth suppressor gene in vitro and that it is silenced frequently by epigenetic mechanisms in primary gliomas. The shared epigenetic inactivation of mSLC5A8 in mouse gliomas indicates an additional degree of commonality in the origin and/or pathway to tumorigenesis between primary human tumors and these mouse models of gliomas.
Collapse
Affiliation(s)
- Chibo Hong
- Department of Neurological Surgery, Brain Tumor Research Center, University of California-San Francisco, San Francisco, California 94143-0875, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Di Nicolantonio R, Kostka V, Kwitek A, Jacob H, Thomas WG, Harrap SB. Fine mapping of Lvm1: a quantitative trait locus controlling heart size independently of blood pressure. Pulm Pharmacol Ther 2005; 19:70-3. [PMID: 16286240 DOI: 10.1016/j.pupt.2005.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 02/14/2005] [Accepted: 02/22/2005] [Indexed: 11/16/2022]
Abstract
We have previously reported a quantitative trait locus (QTL) on rat chromosome 2 that influences heart size independently of blood pressure (Left Ventricular Mass Locus 1; Lvm1). The recent release of the rat genome sequence allowed us to retest and refine this relatively broad QTL with a view to identifying within it candidate genes worthy of structural investigation. We sought to achieve this 'fine mapping' by increasing the marker density within the interval and undertaking a linkage analysis in a previously defined population of F2 hybrids generated from inbred spontaneously hypertensive rats (SHR) of the Okamoto strain and Fischer rat (F344) progenitors. We were able to reconfirm and resolve Lvm1 from its original width of approximately 45 to 15 cM. By reference to the ENSEBL rat genome data bank, we identified within Lvm1 27 known genes, 109 predicted genes and 7 pseudogenes. Of the known genes, candidates include potential regulators of cardiac growth, a sodium channel and calcium channel as well as the fibroblast growth factor 2 gene. Located nearby the Lvm1 locus was the gene for the angiotensin Type 1B receptor. Given the evidence that the ligand for the angiotensin Type 1B receptor-angiotensin II-is a potent cardiotroph, we also consider this gene a potential candidate. The identification of the precise allelic variant(s) within Lvm1 involved in the control of pressure-independent cardiac growth awaits further molecular studies.
Collapse
Affiliation(s)
- R Di Nicolantonio
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Katabami M, Donninger H, Hommura F, Leaner VD, Kinoshita I, Chick JFB, Birrer MJ. Cyclin A is a c-Jun target gene and is necessary for c-Jun-induced anchorage-independent growth in RAT1a cells. J Biol Chem 2005; 280:16728-38. [PMID: 15737994 DOI: 10.1074/jbc.m413892200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Overexpression of c-Jun enables Rat1a cells to grow in an anchorage-independent manner. We used an inducible c-Jun system under the regulation of doxycycline in Rat1a cells to identify potential c-Jun target genes necessary for c-Jun-induced anchorage-independent growth. Induction of c-Jun results in sustained expression of cyclin A in the nonadherent state with only minimal expression in the absence of c-Jun. The promoter activity of cyclin A2 was 4-fold higher in Rat1a cells in which c-Jun expression was induced compared with the control cells. Chromatin immunoprecipitation demonstrated that c-Jun bound directly to the cyclin A2 promoter. Mutation analysis of the cyclin A2 promoter mapped the c-Jun regulatory site to an ATF site at position -80. c-Jun was able to bind to this site both in vitro and in vivo, and mutation of this site completely abolished promoter activity. Cyclin A1 was also elevated in c-Jun-overexpressing Rat1a cells; however, c-Jun did not regulate this gene directly, since it did not bind directly to the cyclin A1 promoter. Suppression of cyclin A expression via the introduction of a cyclin A antisense sequences significantly reduced the ability of c-Jun-overexpressing Rat1a cells to grow in an anchorage-independent fashion. Taken together, these results suggest that cyclin A is a target of c-Jun and is necessary but not sufficient for c-Jun-induced anchorage-independent growth. In addition, we demonstrated that the cytoplasmic oncogenes Ras and Src transcriptionally activated the cyclin A2 promoter via the ATF site at position -80. Using a dominant negative c-Jun mutant, TAM67, we showed that this transcriptional activation of cyclin A2 requires c-Jun. Thus, our results suggest that c-Jun is a mediator of the aberrant cyclin A2 expression associated with Ras/Src-induced transformation.
Collapse
Affiliation(s)
- Motoo Katabami
- Department of Cell and Cancer Biology, NCI, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Zucchi I, Mento E, Kuznetsov VA, Scotti M, Valsecchi V, Simionati B, Vicinanza E, Valle G, Pilotti S, Reinbold R, Vezzoni P, Albertini A, Dulbecco R. Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci U S A 2004; 101:18147-52. [PMID: 15608061 PMCID: PMC539802 DOI: 10.1073/pnas.0408260101] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression profiles of breast carcinomas are difficult to interpret when they are obtained from tissue in toto, which may contain a large proportion of non-cancer cells. To avoid this problem, we microscopically isolated cells from a primary invasive ductal carcinoma of the breast and from an axillary node harboring a metastatic breast carcinoma, to obtain pure populations of carcinoma cells ( approximately 500) and used them for serial analysis of gene expression. The expression profiles generated from both populations of cells were compared with the profile of a disease-free mammary epithelium. We showed that the expression profiles obtained are exclusive of carcinoma cells with no contribution of non-epithelial cells. From a total of 16,939 unique tags analyzed, we detected 559 statistically significant changes in gene expression; some of these genes have not been previously associated with breast cancer. We observed that many of the down-regulated genes are the same in both cancers, whereas the up-regulated genes are completely different, suggesting that the down-regulation of a set of genes may be the basic mechanism of cancer formation, while the up-regulation may characterize and possibly control the state of evolution of individual cancers. The results obtained may help in characterizing the neoplastic process of breast cancer.
Collapse
Affiliation(s)
- I Zucchi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F. lli Cervi 93, 20090 Segrate-Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rush LJ, Plass C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal Biochem 2002; 307:191-201. [PMID: 12202234 DOI: 10.1016/s0003-2697(02)00033-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The field of molecular biology was revolutionized by the advent of gel electrophoresis. Restriction landmark genomic scanning (RLGS) is a type of two-dimensional electrophoresis employed in the genome-wide assessment of genomic alterations. RLGS has been used to study genetic and epigenetic changes in normal tissues, primary tumors, cancer cell lines, and various organisms such as mice, rats, hamsters, bacteria, and plants. An RLGS profile displays over 2000 radiolabeled restriction landmark sites in a single assay. When conducted with methylation-sensitive restriction enzymes whose sites are preferentially located in CpG island regulatory regions, RLGS becomes a very versatile tool for the investigation of both normal and aberrant methylation patterns. Early studies performed on tumor DNA were mainly descriptive in nature, essentially a catalogue of loci that were changed to varying degrees in different tumor types. Over time, as investigators have become more proficient with RLGS and have undertaken high-throughput studies, the need for efficient cloning, imaging, and analysis systems has become paramount. Current studies focus on identifying specific genes and pathways involved in deregulated methylation in cancer. As such, RLGS analysis of tumor samples has made tremendous contributions to our understanding of the role of DNA methylation in cancer. Future directions will take advantage of the abundant genomic sequence data available to link all of the RLGS loci to genes and create biologically relevant methylation profiles of cancer. This review discusses practical considerations of using RLGS as a genome scanning tool and the past, present, and future applications in cancer biology.
Collapse
Affiliation(s)
- Laura J Rush
- Department of Veterinary Biosciences, Division of Human Cancer Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
9
|
Kim AL, Athar M, Bickers DR, Gautier J. Stage-specific alterations of cyclin expression during UVB-induced murine skin tumor development. Photochem Photobiol 2002; 75:58-67. [PMID: 11837328 DOI: 10.1562/0031-8655(2002)075<0058:ssaoce>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have evaluated the in vivo correlation between the expression of cell cycle markers and skin tumor development in SKH-1 hairless mice in a complete photocarcinogenesis protocol. Irradiated mice developed an average of 16 tumors per animal by week 23 with the average number of carcinomas per mouse being 2.1. The expression of p53 and cyclins A and D1 was confined initially to sporadic single cells and gradually developed into foci of patchy intense staining in the basal and granular layers of UVB-exposed epidermis. p53 was expressed in all the papilloma sections examined, whereas cyclins D1 and A were expressed in 68 and 71% of these lesions, respectively. In UVB-induced squamous cell carcinomas (SCC), p53 was expressed in >90% of the tumors, whereas cyclin D1 was detected in 55% of the lesions, and cyclin A staining was limited to 27%. These immunohistochemical observations were confirmed by Western blotting and protein kinase assays. We observed an early wave of cyclin A overexpression and cyclin A protein kinase activity preceding the appearance of detectable tumors. Cyclin D1 and p53 overexpression were coupled with the development of tumors, and these changes are likely to be relevant to the pathogenesis of these lesions.
Collapse
Affiliation(s)
- Arianna L Kim
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
10
|
Abstract
DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.
Collapse
Affiliation(s)
- J F Costello
- The Brain Tumor Research Center and the Department of Neurological Surgery, University of California, 2340 Sutter, Room N261, San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
11
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447185 DOI: 10.1002/cfg.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|