1
|
Zhang L, Du Y, Deng Y, Bai T, Wang J, Wang W, Ji M. Mutations in target gene confers resistance to acetolactate synthase inhibitors in Echinochloa phyllopogon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109194. [PMID: 39406000 DOI: 10.1016/j.plaphy.2024.109194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Echinochloa phyllopogon is a noxious weed that can harm rice over prolonged periods. Recently, a penoxsulam-resistant variant of E. phyllopogon with a mutation in the acetolactate synthase (ALS) gene was collected in Northeastern China. In the present study, the molecular mechanism underlying herbicide resistance in mutant populations was evaluated. The GR50 and IC50 values of the herbicide-resistant mutant 1-11 were 27.0- and 21.4-fold higher than those of the susceptible population 2-31, respectively. In addition, pre-application of malathion reduced the GR50 value of the resistant population. Additionally, mutant populations developed cross-resistance to other ALS inhibitors. E. phyllopogon ALS sequencing showed a Trp-574-Leu mutation in ALS2 variant 1-11. Molecular docking showed that the Trp-574-Leu substitution reduced the number of hydrogen bonds and altered the interaction between penoxsulam and ALS2. Transgenic Arabidopsis plants harboring the ALS2 mutant gene also showed resistance to penoxsulam and other ALS inhibitors. Overall, our study demonstrated that the Trp-574-Leu mutation and P450-mediated metabolic resistance lead to the cross-resistance of E. phyllopogon to ALS inhibitors.
Collapse
Affiliation(s)
- Lulu Zhang
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, 110866, China.
| | - Ying Du
- Solid Waste and Chemical Management Center, MEE of PR China, No. 1 Yu Hui Nan Road, Chaoyang District, Beijing, China.
| | - Yunyan Deng
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, 110866, China.
| | - Tianlang Bai
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, 110866, China.
| | - Jiaxin Wang
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, 110866, China.
| | - Weijing Wang
- Agricultural and Rural Bureau of Caofeidian District, Tangshan, Hebei, 063299, China.
| | - Mingshan Ji
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
2
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Huang Y, Zhao S, Xian L, Li W, Zhou C, Sun J. Negative Effects of Butachlor on the Growth and Physiology of Four Aquatic Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:304. [PMID: 38276761 PMCID: PMC10819925 DOI: 10.3390/plants13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The increasing use of herbicides in intelligent agricultural production is driven by the time-consuming nature of manual weeding, as well as its ephemeral effectiveness. However, herbicides like butachlor degrade slowly and can be washed away by rainwater, ultimately flowing into the farm ponds and posing risks to aquatic plants. To identify and recommend superior restoration strategies that effectively address the challenges posed by butachlor, we investigated the impacts of butachlor on the growth and physiology of four common aquatic plants (i.e., Hydrilla verticillata, Ceratophyllum demersum, Potamogeton maackianus, and Myriophyllum aquaticum) and their potential role in mitigating environmental damage by reducing residual herbicide levels. Our findings indicated that M. aquaticum was tolerant to butachlor, exhibiting higher growth rates than other species when exposed to various butachlor concentrations. However, the concentration of butachlor negatively impacted the growth of H. verticillata, C. demersum, and P. maackianus, with higher concentrations leading to more significant inhibitory effects. After a 15-day experimental period, aquatic plants reduced the butachlor residuals in culture mediums across concentrations of 0.5 mg/L, 1 mg/L, and 2 mg/L compared to non-plant controls. Our findings classified P. maackianus as butachlor-sensitive and M. aquaticum as butachlor-tolerant species. This investigation represents novel research aimed at elucidating the contrasting effects of different concentrations of butachlor on four common aquatic species in the agricultural multi-pond system.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Suting Zhao
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan Library, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Xian
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Li
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Cunyu Zhou
- School of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junyao Sun
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| |
Collapse
|
4
|
Li J, Li Y, Fang F, Xue D, Li R, Gao X, Li M. A novel naturally Phe206Tyr mutation confers tolerance to ALS-inhibiting herbicides in Alopecurus myosuroides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105156. [PMID: 35973769 DOI: 10.1016/j.pestbp.2022.105156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Herbicide-resistant weeds pose a serious threat to world food production. The rapid and widespread development of target-site based resistance limits the application of herbicides. Alopecurus myosuroides Huds. (blackgrass) has spread rapidly in winter wheat regions in China, and the field recommended dose of ALS herbicides no longer controls blackgrass populations in recent years. A highly resistant population TW18(R) was collected in 2018 from Shandong Province. Dose-response assays showed that the TW18 was resistant to mesosulfuron-methyl, flucarbazone-sodium, and imazethapyr, with resistance index values of 5.96, 6.1, and 4.09, respectively. DNA sequencing of the TW18 population revealed a Phe206Tyr (F206Y) mutation in the ALS, which was not yet reported. Blackgrass ALS gene with the F206Y mutation (R gene) was expressed in Arabidopsis and rice. Transgenic studies have shown that both Arabidopsis and rice expressing this R gene have resistance to imazethapyr. However, it did not confer resistance to tribenuron methyl and florasulam in transgenic Arabidopsis. This study showed that the F206Y substitution caused herbicide resistance in blackgrass. To our knowledge, this is the first-reported F206Y mutation of a weed species in the natural environment. Transgenic plants showed this functional site could be utilized to generate imazethapyr-resistant rice to control herbicide-resistant weed damage.
Collapse
Affiliation(s)
- Jian Li
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng Fang
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Dexing Xue
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Rumei Li
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Xingxiang Gao
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China.
| | - Mei Li
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China.
| |
Collapse
|
5
|
Rodriguez J, Hauvermale A, Carter A, Zuger R, Burke IC. An ALA 122 THR substitution in the AHAS/ALS gene confers imazamox-resistance in Aegilops cylindrica. PEST MANAGEMENT SCIENCE 2021; 77:4583-4592. [PMID: 34087037 DOI: 10.1002/ps.6498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wheat growers have limited herbicide options to manage Aegilops cylindrica Host (jointed goatgrass), with many relying on mesosulfuron or imazamox in Clearfield™ winter wheat. Both imazamox and mesosulfuron inhibit acetohydroxyacid synthase/acetolactate synthase (AHAS/ALS). In 2015, a suspected imazamox resistant biotype of Ae. cylindrica was found in eastern Washington. RESULTS Imazamox and mesosulfuron were applied to the suspected resistant and susceptible Ae. cylindrica biotypes in increasing application rates to evaluate herbicide dose needed to cause 50% growth reduction (GR50 ). The imazamox resistant biotype had a GR50 of 308.5 g ai ha-1 and was more than 5000 times more resistant to imazamox than a known susceptible biotype with a GR50 of 0.06 g ai ha-1 . The Ae. cylindrica resistant biotype was also resistant to mesosulfuron, with an GR50 of 46.82 g ai ha-1 , which was five times more than the susceptible GR50 of 8.6 g ai ha-1 . Sequencing of the AHAS/ALS gene revealed an Ala122 Thr substitution in the herbicide binding region of the AHAS/ALS gene on the D genome of Ae. cylindrica. The resistance trait was inherited as a dominant trait, and the Ala122 Thr co-segregates with the resistance phenotype. CONCLUSIONS An Ala122 Thr substitution in the AHAS/ALS gene on the D genome of Ae. cylindrica confers resistance to imazamox in Ae. cylindrica. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jeanette Rodriguez
- Department of Crop and Soil Science, Washington State University, Pullman, WA, USA
| | - Amber Hauvermale
- Department of Crop and Soil Science, Washington State University, Pullman, WA, USA
| | - Arron Carter
- Department of Crop and Soil Science, Washington State University, Pullman, WA, USA
| | - Rachel Zuger
- Department of Crop and Soil Science, Washington State University, Pullman, WA, USA
| | - Ian C Burke
- Department of Crop and Soil Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Buffon G, Lamb TI, Lopes MCB, Sperotto RA, Timmers LFSM. Push It to the Limit: Identification of Novel Amino Acid Changes on the Acetolactate Synthase Enzyme of Rice That Putatively Confer High Level of Tolerance to Different Imidazolinones. Front Bioeng Biotechnol 2020; 8:73. [PMID: 32117948 PMCID: PMC7033567 DOI: 10.3389/fbioe.2020.00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
Advancements in genetically modified herbicide tolerance technology opened a new way to manage weed populations in crop fields. Since then, many important genetically modified crops that are tolerant to various herbicides have been developed and commercialized. Herbicides primarily act by disrupting key enzymes involved in essential metabolic or physiological processes associated with growth and development of plants. Most of the herbicide tolerant plants have been developed by introducing point mutations (non-GM approach) in the target site of herbicide action, due to the advantage of easier registration/release for commercial cultivation as well as wider public acceptance. Of the various herbicides, Imidazolinones are probably the most widely targeted ones for developing herbicide tolerant crops through non-GM approach. In rice, different mutant lines presenting amino acids changes in acetolactate synthase (ALS) have the ability to tolerate different Imidazolinones, including point mutations of Glycine to Glutamate in position 628, Serine to Asparagine in position 627, and a double mutation Tryptophan to Leucine in position 548/Serine to Isoleucine in position 627. The use of specific herbicides in combination of these mutant lines provides a reliable approach to eliminate weeds in the fields. However, the continuous overuse of a single herbicide multiple times in a growing season increases the potential risk of evolution of resistant weeds, which has become a major concern in agriculture worldwide. For this reason, the development of novel mutations in ALS (Os02g30630) to generate rice plants more tolerant to Imidazolinones than the available mutant rice lines is still a hot topic in plant-herbicide interaction field. Keeping that in mind, we carried out molecular docking experiments of Imidazolinone herbicides imazapic, imazapyr, imazaquin, and imazethapyr to evaluate the interaction of these molecules in the binding cavity of ALS from rice, being able to identify the most important amino acids responsible for the stability of these four herbicides. After introducing point mutations in these specific positions (one at a time) using Alanine scanning mutagenesis method and recalculating the effect in the affinity of herbicide-ALS interaction, we were able to propose novel amino acid residues (mainly Lysine in position 230 and Arginine in position 351) on the structure of ALS presenting a highest impact in the binding of Imidazolinones to ALS when compared to the already known amino acid mutations. This rational approach allows the researcher/farmer to choose the number of point mutations to be inserted in a rice cultivar, which will be dependent on the type of Imidazolinone used. To obtain a rice cultivar capable to tolerate the four Imidazolinone tested at the same time, we suggest six amino acid mutations at positions Val170, Phe180, Lys230, Arg351, Trp548, and Ser627 in the OsALS1.
Collapse
Affiliation(s)
- Giseli Buffon
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
| | - Thainá Inês Lamb
- Biological Sciences and Health Center, University of Taquari Valley – Univates, Lajeado, Brazil
| | | | - Raul Antonio Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
- Biological Sciences and Health Center, University of Taquari Valley – Univates, Lajeado, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
- Biological Sciences and Health Center, University of Taquari Valley – Univates, Lajeado, Brazil
| |
Collapse
|
7
|
Han YJ, Kim JI. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. PLANT BIOTECHNOLOGY REPORTS 2019; 13:447-457. [PMID: 0 DOI: 10.1007/s11816-019-00575-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 05/27/2023]
|
8
|
Piao Z, Wang W, Wei Y, Zonta F, Wan C, Bai J, Wu S, Wang X, Fang J. Characterization of an acetohydroxy acid synthase mutant conferring tolerance to imidazolinone herbicides in rice (Oryza sativa). PLANTA 2018; 247:693-703. [PMID: 29170911 DOI: 10.1007/s00425-017-2817-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
The acetohydroxy acid synthase S627N mutation confers herbicide tolerance in rice, and the rice variety containing this mutation produces good yields. This variety is commercially viable at Shanghai and Jiangsu regions in China. Weedy rice is a type of rice that produces lower yields and poorer quality grains than cultivated rice. It plagues commercial rice fields in many countries. One strategy to control its proliferation is to develop rice varieties that are tolerant to specific herbicides. Acetohydroxy acid synthase (AHAS) mutations have been found to confer herbicide tolerance to rice. Here, we identified a single mutation (S627N) in AHAS from an indica rice variety that conferred tolerance against imidazolinone herbicides, including imazethapyr and imazamox. A japonica rice variety (JD164) was developed to obtain herbicide tolerance by introducing the mutated indica ahas gene. Imidazolinone application was sufficient to efficiently control weedy rice in the JD164 field. Although the imazethapyr treatment caused dwarfing in the JD164 plants, it did not significantly reduce yields. To determine whether the decrease of the ahas mRNA expression caused the dwarfism of JD164 after imazethapyr application, we detected the ahas mRNA level in plants. The abundance of the ahas mRNA in JD164 increased after imidazolinone application, thus excluding the mRNA expression level as a possible cause of dwarfism. Activity assays showed that the mutated AHAS was tolerant to imidazolinone but the catalytic efficiency of the mutated AHAS decreased in its presence. Moreover, the activity of the mutated AHAS decreased more in the presence of imazethapyr than in the presence of imazamox. We observed no difference in the AHAS secondary structures, but homology modeling suggested that the S627N mutation enabled the substrate to access the active site channel in AHAS, resulting in imidazolinone tolerance. Our work combined herbicides with a rice variety to control weedy rice and showed the mechanism of herbicide tolerance in this rice variety.
Collapse
Affiliation(s)
- Zhongze Piao
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 99 Haike Rd, Shanghai, 201210, China
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 99 Haike Rd, Shanghai, 201210, China
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, 00015, Monterotondo, RM, Italy
| | - Changzhao Wan
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Jianjiang Bai
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Shujun Wu
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Xinqi Wang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Jun Fang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China.
| |
Collapse
|
9
|
Yoon MY, Gedi V, Kim J, Park Y, Kim DE, Park EH, Choi JD. Structural and functional evaluation of three well-conserved serine residues in tobacco acetohydroxyacid synthase. Biochimie 2010; 92:65-70. [PMID: 19825392 DOI: 10.1016/j.biochi.2009.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 09/21/2009] [Indexed: 11/19/2022]
Abstract
The first step in the common pathway for the biosynthesis of branched-chain amino acids (BCAAs) is catalyzed by acetohydroxyacid synthase (AHAS). The roles of three well-conserved serine residues (S167, S506, and S539) in tobacco AHAS were determined using site-directed mutagenesis. The mutations S167F and S506F were found to be inactive and abolished the binding affinity for cofactor FAD. The Far-UV CD spectrum of the inactive mutants was similar to that of wild-type enzyme, indicating no major conformational changes in the secondary structure. However, the active mutants, S167R, S506A, S506R, S539A, S539F and S539R, showed lower specific activities. Further, a homology model of tobacco AHAS was generated based on the crystal structure of yeast AHAS. In the model, the S167 and S506 residues were identified near the FAD binding site, while the S539 residue was found to near the ThDP binding site. The S539 mutants, S539A and S539R, showed strong resistance to three classes of herbicides, NC-311 (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In contrast, the active S167 and S506 mutants did not show any significant resistance to the herbicides, with the exception of S506R, which showed strong resistance to all herbicides. Thus, our results suggest that the S167 and S506 residues are essential for catalytic activity by playing a role in the FAD binding site. The S539 residue was found to be near the ThDP with an essential role in the catalytic activity and specific mutants of this residue (S539A and S539R) showed strong herbicide resistance as well.
Collapse
Affiliation(s)
- Moon-Young Yoon
- Department of Chemistry, Hanyang University, Seoul, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
10
|
Huang X, He J, Sun XF, Sun JQ, Li YF, Shen JJ, Li SP. Characterization and molecular mechanism of a naturally occurring metsulfuron-methyl resistant strain of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Laplante J, Rajcan I, Tardif FJ. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:577-585. [PMID: 19495723 DOI: 10.1007/s00122-009-1067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 05/09/2009] [Indexed: 05/25/2023]
Abstract
In weed species, resistance to herbicides inhibiting acetohydroxyacid synthase (AHAS) is often conferred by genetic mutations at one of six codons in the AHAS gene. These mutations provide plants with various levels of resistance to different chemical classes of AHAS inhibitors. Five green foxtail [Setaria viridis (L.) Beauv.] populations were reported in Ontario with potential resistance to the AHAS-inhibiting herbicide imazethapyr. The objectives of this study were to confirm resistance, establish the resistance spectrum for each of the five populations, and determine its genetic basis. Dose response curves were generated for whole plant growth and enzyme activity, and the AHAS gene was sequenced. Resistance was confirmed by determining the resistance factor to imazethapyr in the five resistant green foxtail populations for whole plant dose response experiments (21- to 182-fold) and enzyme assays (15- to 260-fold). All five imazethapyr-resistant populations showed cross-resistance to nicosulfuron and flucarbazone while only three populations had cross-resistance to pyrithiobac. Sequence analyses revealed single base-pair mutations in the resistant populations of green foxtail. These mutations were coded for Thr, Asn, or Ile substitution at Ser(653). In addition, a new mutation was found in one population that coded for an Asp substitution at Gly(654). There is an agreement between the spectra of resistance observed and the type of resistance known to be conferred by these substitutions. Moreover, it indicates that, under similar selection pressure (imazethapyr), a variety of mutations can be selected for different populations, making the resistance pattern difficult to predict from herbicide exposure history.
Collapse
Affiliation(s)
- Julie Laplante
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
12
|
Sala CA, Bulos M, Echarte M, Whitt SR, Ascenzi R. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 118:105-12. [PMID: 18784913 DOI: 10.1007/s00122-008-0880-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 08/23/2008] [Indexed: 05/20/2023]
Abstract
A partially dominant nuclear gene conferring resistance to the imidazolinone herbicides was previously identified in the cultivated sunflower (Helianthus annuus L.) line CLHA-Plus developed by seed mutagenesis. The objective of this study was to characterize this resistant gene at the phenotypic, biochemical and molecular levels. CLHA-Plus showed a complete susceptibility to sulfonylureas (metsulfuron, tribenuron and chlorsulfuron) but, on the other hand, it showed a complete resistance to imidazolinones (imazamox, imazapyr and imazapic) at two rates of herbicide application. This pattern was in close association with the AHAS-inhibition kinetics of protein extracts of CLHA-Plus challenged with different doses of imazamox and chlorsulfuron. Nucleotide and deduced amino acid sequence comparisons between resistant and susceptible lines indicated that the imidazolinone-resistant AHAS of CLHA-Plus has a threonine codon (ACG) at position 122 (relative to the Arabidopsis thaliana AHAS sequence), whereas the herbicide-susceptible enzyme from BTK47 has an alanine residue (GCG) at this position. Since the resistance genes to AHAS-inhibiting herbicides so far characterized in sunflower code for the catalytic (large) subunit of AHAS, we propose to redesignate the wild type allele as ahasl1 and the incomplete dominant resistant alleles as Ahasl1-1 (previously Imr1 or Ar ( pur )), Ahasl1-2 (previously Ar ( kan )) and Ahasl1-3 (for the allele present in CLHA-Plus). The higher tolerance level to imidazolinones and the lack of cross-resistance to other AHAS-inhibiting herbicides of Ahasl1-3 indicate that this induced mutation can be used to develop commercial hybrids with superior levels of tolerance and, at the same time, to assist weed management where control of weedy common sunflower is necessary.
Collapse
Affiliation(s)
- Carlos A Sala
- Biotechnology Department, NIDERA S.A., Ruta 8 km 376, Casilla de Correo 6, 2600, Venado Tuerto, Santa Fe, Argentina.
| | | | | | | | | |
Collapse
|
13
|
Duggleby RG, McCourt JA, Guddat LW. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:309-24. [PMID: 18234503 DOI: 10.1016/j.plaphy.2007.12.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 05/04/2023]
Abstract
Plants and microorganisms synthesize valine, leucine and isoleucine via a common pathway in which the first reaction is catalysed by acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This enzyme is of substantial importance because it is the target of several herbicides, including all members of the popular sulfonylurea and imidazolinone families. However, the emergence of resistant weeds due to mutations that interfere with the inhibition of AHAS is now a worldwide problem. Here we summarize recent ideas on the way in which these herbicides inhibit the enzyme, based on the 3D structure of Arabidopsis thaliana AHAS. This structure also reveals important clues for understanding how various mutations can lead to herbicide resistance.
Collapse
Affiliation(s)
- Ronald G Duggleby
- RDBiotech, 22 Parklands Boulevard, Little Mountain, Queensland 4551, Australia.
| | | | | |
Collapse
|
14
|
Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.6.947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
16
|
Le DT, Yoon MY, Kim YT, Choi JD. Roles of three well-conserved arginine residues in mediating the catalytic activity of tobacco acetohydroxy acid synthase. J Biochem 2005; 138:35-40. [PMID: 16046446 DOI: 10.1093/jb/mvi099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acetohydroxy acid synthase (AHAS, EC 2.2.1.6; also known as acetolactate synthase, ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in plants and microorganisms. AHAS is the target of several classes of herbicides. In the present study, the role of three well-conserved arginine residues (R141, R372, and R376) in tobacco AHAS was determined by site-directed mutagenesis. The mutated enzymes, referred to as R141A, R141F, and R376F, were inactive and unable to bind to the cofactor, FAD. The inactive mutants had the same secondary structure as that of the wild type. The mutants R141K, R372F, and R376K exhibited much lower specific activities than the wild type, and moderate resistance to herbicides such as Londax, Cadre, and/or TP. The mutation R141K showed a strong reduction in activation efficiency by ThDP, while the mutations R372K and R376K showed a strong reductions in activation efficiency by FAD in comparison to the wild type enzyme. Taking into account the data presented here and the homology model constructed previously [Le et al. (2004) Biochem. Biophys. Res. Commun. 317, 930-938], it is suggested that the three amino acid residues studied (R141, R372, and R376) are located essentially at the enzyme active site, and, furthermore, that residues R372 and R376 are possibly responsible for the binding of the enzyme to FAD.
Collapse
Affiliation(s)
- Dung Tien Le
- School of Life Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | |
Collapse
|
17
|
Kim J, Beak DG, Kim YT, Choi JD, Yoon MY. Effects of deletions at the C-terminus of tobacco acetohydroxyacid synthase on the enzyme activity and cofactor binding. Biochem J 2004; 384:59-68. [PMID: 15521822 PMCID: PMC1134088 DOI: 10.1042/bj20040427] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/17/2004] [Accepted: 07/22/2004] [Indexed: 11/17/2022]
Abstract
AHAS (acetohydroxyacid synthase) catalyses the first committed step in the biosynthesis of branched-chain amino acids, such as valine, leucine and isoleucine. Owing to the unique presence of these biosynthetic pathways in plants and micro-organisms, AHAS has been widely investigated as an attractive target of several classes of herbicides. Recently, the crystal structure of the catalytic subunit of yeast AHAS has been resolved at 2.8 A (1 A=0.1 nm), showing that the active site is located at the dimer interface and is near the herbicide-binding site. In this structure, the existence of two disordered regions, a 'mobile loop' and a C-terminal 'lid', is worth notice. Although these regions contain the residues that are known to be important in substrate specificity and in herbicide resistance, they are poorly folded into any distinct secondary structure and are not within contact distance of the cofactors. In the present study, we have tried to demonstrate the role of these regions of tobacco AHAS by constructing variants with serial deletions, based on the structure of yeast AHAS. In contrast with the wild-type AHAS, the truncated mutant which removes the C-terminal lid, Delta630, and the internal deletion mutant without the mobile loop, Delta567-582, impaired the binding affinity for ThDP (thiamine diphosphate), and showed different elution profiles representing a monomeric form in gel-filtration chromatography. Our results suggest that these regions are involved in the binding/stabilization of the active dimer and ThDP binding.
Collapse
Affiliation(s)
- Joungmok Kim
- *Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, South Korea
| | - Dong-Gil Beak
- *Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, South Korea
| | - Young-Tae Kim
- †Department of Microbiology, Pukyung National University, Busan 608-737, South Korea
| | - Jung-Do Choi
- ‡School of Life Science and Research Institute for Genetic Engineering, Chungbuk National University, Cheongju 361-763, South Korea
| | - Moon-Young Yoon
- *Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, South Korea
| |
Collapse
|
18
|
Jung SM, Le D, Yoon SS, Yoon MY, Kim Y, Choi JD. Amino acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase. Biochem J 2004; 383:53-61. [PMID: 15214847 PMCID: PMC1134043 DOI: 10.1042/bj20040720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 06/04/2004] [Accepted: 06/24/2004] [Indexed: 11/17/2022]
Abstract
The enzyme AHAS (acetohydroxy acid synthase), which is involved in the biosynthesis of valine, leucine and isoleucine, is the target of several classes of herbicides. A model of tobacco AHAS was generated based on the X-ray structure of yeast AHAS. Well conserved residues at the herbicide-binding site were identified, and the roles of three of these residues (Phe-205, Val-570 and Phe-577) were determined by site-directed mutagenesis. The Phe-205 mutants F205A, F205H, F205W and F205Y showed markedly decreased levels of catalytic efficiency, and cross-resistance to two or three classes of herbicides, i.e. Londax (a sulphonylurea herbicide), Cadre (an imidazolinone herbicide) and TP (a triazolopyrimidine derivative). None of the mutations caused significant changes in the secondary or tertiary structure of the enzyme. Four mutants of Phe-577, i.e. F577D, F577E, F577K and F577R, showed unaltered V(max) values, but substantially decreased catalytic efficiency. However, these mutants were highly resistant to two or three of the tested herbicides. The three mutants F577D, F577E and F577R had a similar secondary structure to that of wild-type AHAS. Conservative mutations of Phe-577, i.e. F577W and F577Y, did not affect the kinetic properties of the enzyme or its inhibition by herbicides. The mutation Val-570 to Asn abolished the binding affinity of the enzyme for FAD as well as its activity, and also caused a change in the tertiary structure of AHAS. However, the mutant V570Q was active, but resistant to two classes of herbicides, i.e. Londax and TP. The conservative mutant V570I was substantially reduced in catalytic efficiency and moderately resistant to the three herbicides. The results of this study suggest that residues Phe-205, Val-570 and Phe-577 in tobacco AHAS are located at or near the binding site that is common for the three classes of herbicides. In addition, Phe-205 and Val-570 are probably located at the herbicide-binding site that may overlap partially with the active site. Selected mutants of Phe-577 are expected to be utilized to construct herbicide-resistant transgenic plants.
Collapse
Affiliation(s)
- Sun-Mi Jung
- *School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea
| | - Dung Tien Le
- *School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea
| | - Sung-Sook Yoon
- *School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea
| | - Moon-Young Yoon
- †Department of Chemistry, Hanyang University, Seoul 133-791, Korea
| | - Young Tae Kim
- ‡Department of Microbiology, Pukyong National University, Busan 608-737, Korea
| | - Jung-Do Choi
- *School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
19
|
Le DT, Yoon MY, Kim YT, Choi JD. Homology modeling of the structure of tobacco acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochem Biophys Res Commun 2004; 317:930-8. [PMID: 15081429 DOI: 10.1016/j.bbrc.2004.03.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Indexed: 11/24/2022]
Abstract
A reliable model of tobacco acetohydroxy acid synthase (AHAS) was obtained by homology modeling based on a yeast AHAS X-ray structure using the Swiss-Model server. Conserved residues at the dimer interface were identified, of which the functional roles of four residues, namely H142, E143, M489, and M542, were determined by site-directed mutagenesis. Eight mutants were successfully generated and purified, five of which (H142T, M489V, M542C, M542I, and M542V) were found to be inactive under various assay conditions. The H142K mutant was moderately altered in all kinetic parameters to a similar extent. In addition, the mutant was more thermo-labile than wild type enzyme. The E143A mutant increased the Km value more than 20-fold while other parameters were not significantly changed. All mutations carried out on residue M542 inactivated the enzyme. Though showing a single band on SDS-PAGE, the M542C mutant lost its native tertiary structure and was aggregated. Except M542C, each of the other mutants showed a secondary structure similar to that of wild type enzyme. Although all the inactive mutants were able to bind FAD, the mutants M489V and M542C showed a very low affinity for FAD. None of the active mutants constructed was strongly resistant to three tested herbicides. Taken together, the results suggest that the residues of H142, E143, M489, and M542 are essential for catalytic activity. Furthermore, it seems that H142 residue is involved in stabilizing the dimer interaction, while E143 residue may be involved in binding with substrate pyruvate. The data from the site-directed mutagenesis imply that the constructed homology model of tobacco AHAS is realistic.
Collapse
Affiliation(s)
- Dung Tien Le
- School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Yoon JM, Yoon MY, Kim YT, Choi JD. Characterization of Two Forms of Acetolactate Synthase from Barley. BMB Rep 2003; 36:456-61. [PMID: 14536028 DOI: 10.5483/bmbrep.2003.36.5.456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target site for several classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. Two forms of ALS (designated ALS I and ALS II) were separated from barley shoots by heparin affinity column chromatography. The molecular masses of native ALS I and ALS II were determined to be 248 kDa and 238 kDa by nondenaturing gel electrophoresis and activity staining. Similar molecular masses of two forms of ALS were confirmed by a Western blot analysis. SDS-PAGE and Western blot analysis showed that the molecular masses of the ALS I and ALS II subunits were identical--65 kDa. The two ALS forms exhibited different properties with respect to the values of K(m), pI and optimum pH, and sensitivity to inhibition by herbicides sulfonylurea and imidazolinone as well as to the feedback regulation by the end-product amino acids Val, Leu, and Ile. These results, therefore, suggest that the two ALS forms are not different polymeric forms of the same enzyme, but isozymes.
Collapse
Affiliation(s)
- Jong-Mo Yoon
- School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | |
Collapse
|
21
|
Tien Le D, Yoon MY, Kim YT, Choi JD. Roles of conserved methionine residues in tobacco acetolactate synthase. Biochem Biophys Res Commun 2003; 306:1075-82. [PMID: 12821153 DOI: 10.1016/s0006-291x(03)01098-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The conserved methionine residues of ALS from plants were identified by multiple sequence alignment using ClustalW. The alignment of 17 ALS sequences from plants revealed 149 identical residues, seven of which were methionine residues. The roles of three well-conserved methionine residues (M350, M512, and M569) in tobacco ALS were determined using site-directed mutagenesis. The mutation of M350V, M512V, and M569V inactivated the enzyme and abolished the binding affinity for cofactor FAD. Nevertheless, the secondary structure of each of the mutants determined by CD spectrum was not affected significantly by the mutation. Both M350C and M569C mutants were strongly resistant to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine), while M512C mutant did not show a significant resistance to the herbicides. The mutant M350C was more sensitive to pH change, while the mutant M569C showed a profile for pH dependence activity similar to that of wild type. These results suggest that M512 residue is likely located at or near the active site, and that M350 and M569 residues are probably located at the overlapping region between the active site and a common herbicide binding site.
Collapse
Affiliation(s)
- Dung Tien Le
- School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Yoon TY, Chung SM, Chang SI, Yoon MY, Hahn TR, Choi JD. Roles of lysine 219 and 255 residues in tobacco acetolactate synthase. Biochem Biophys Res Commun 2002; 293:433-9. [PMID: 12054619 DOI: 10.1016/s0006-291x(02)00249-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. The ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The roles of three well-conserved lysine residues (K219, K255, K299) in tobacco ALS were determined using site-directed mutagenesis. The mutation of K219Q inactivated the enzyme and abolished the binding affinity for cofactor FAD. However, the secondary structure of the enzyme was not changed significantly by the mutation. Both mutants, K255F and K255Q, showed strong resistance to three classes of herbicides Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In addition, there was no difference in the secondary structures of wALS and K255F. On the other hand, the mutation of K299Q did not show any significant effect on the kinetic properties or any sensitivity to the herbicides. These results suggest that Lys219 is located at the active site and is likely involved in the binding of FAD, and that Lys255 is located at a binding site common for the three herbicides in tobacco ALS.
Collapse
Affiliation(s)
- Tae-Yeol Yoon
- School of Life Science and Research Institute for Genetic Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Oh KJ, Park EJ, Yoon MY, Han TR, Choi JD. Roles of histidine residues in tobacco acetolactate synthase. Biochem Biophys Res Commun 2001; 282:1237-43. [PMID: 11302749 DOI: 10.1006/bbrc.2001.4714] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in plants and microorganisms. ALS is the target of several structurally diverse classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. The roles of three well-conserved histidine residues (H351, H392, and H487) in tobacco ALS were determined using site-directed mutagenesis. Both H487F and H487L mutations abolished the enzymatic activity as well as the binding affinity for the cofactor FAD. Nevertheless, the mutation of H487F did not affect the secondary structure of the ALS. The K(m) values of H351M, H351Q, and H351F are approximately 18-, 60-, and fivefold higher than that of the wild-type ALS, respectively. Moreover, the K(c) value of H351Q for FAD is about 137-fold higher than that of wALS. Mutants H351M and H351Q showed very strong resistance to Londax (a sulfonylurea) and Cadre (an imidazolinone), whereas mutant H351F was weakly resistant to them. However, the secondary structures of mutants H351M and H351Q appeared to be different from that of wALS. The mutation of H392M did not have any significant effect on the kinetic parameters nor the resistance to ALS-inhibiting herbicides. These results suggest that the His487 residue is located at the active site of the enzyme and is likely involved in the binding of cofactor FAD in tobacco ALS. Mutational analyses of the His351 residue imply that the active site of the ALS is probably close to its binding site of the herbicides, Londax and Cadre.
Collapse
Affiliation(s)
- K J Oh
- School of Life Sciences and Research Institute for Genetic Engineering, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | |
Collapse
|