1
|
Song S, Jiang Y, Chen R, Su W, Liang W, Yang D, Li J, Zhang W, Gao S, Yuan B, Qu G, Sun Z. Whole-cell Biotransformation of Penicillin G by a Three-enzyme Co-expression System with Engineered Deacetoxycephalosporin C Synthase. Chembiochem 2022; 23:e202200179. [PMID: 35384232 DOI: 10.1002/cbic.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Deacetoxycephalosporin C synthase (DAOCS) catalyzes the tranformation of penicillin G to phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA) in dependence on 2-oxoglutarate (2OG). However, the low activity of DAOCS and the expense of 2OG restricted the practical application in the production of G-7-ADCA. Herein, a rational design campaign was performed on a DAOCS from Streptomyces clavuligerus (scDAOCS) in the quest to construct novel expandases. The resulting mutants showed 25~58% increase in activity compared to the template. The dominant DAOCS variants were then embeded into a three-enzyme co-expression system, consisting of a catalase and a L-glutamic oxidase for the generation of 2OG, to convert penicillin G into G-7-ADCA in E. coli . The engineered whole-cell enzyme cascade was applied on an up scaled reaction, exhibiting a yield of G-7-ADCA up to 39.21 mM (14.6 g·L -1 ) with a conversion of 78.42 mol%. This work highlights the potential of the integrated whole-cell system that may inspire further research on green and efficient production of 7-ADCA.
Collapse
Affiliation(s)
- Shiyi Song
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Ruidong Chen
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Wencheng Su
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA
| | - Weinan Liang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, CHINA
| | - Jincheng Li
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Shushan Gao
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, National Enyzme Engineering Lab, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA
| |
Collapse
|
2
|
Niu X, Zhang J, Xue X, Wang D, Wang L, Gao Q. Deacetoxycephalosporin C synthase (expandase): Research progress and application potential. Synth Syst Biotechnol 2021; 6:396-401. [PMID: 34901478 PMCID: PMC8626558 DOI: 10.1016/j.synbio.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Cephalosporins play an indispensable role against bacterial infections. Deacetyloxycephalosporin C synthase (DAOCS), also called expandase, is a key enzyme in cephalosporin biosynthesis that epoxides penicillin to form the hexavalent thiazide ring of cephalosporin. DAOCS in fungus Acremonium chrysogenum was identified as a bifunctional enzyme with both ring expansion and hydroxylation, whereas two separate enzymes in bacteria catalyze these two reactions. In this review, we briefly summarize its source and function, improvement of the conversion rate of penicillin to deacetyloxycephalosporin C through enzyme modification, crystallography features, the prediction of the active site, and application perspective.
Collapse
Affiliation(s)
- Xiaofan Niu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Xianli Xue
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,National Demonstration Center for Experimental Bioengineering Education (Tianjin University of Science and Technology), Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Lin Wang
- College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,National Demonstration Center for Experimental Bioengineering Education (Tianjin University of Science and Technology), Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| |
Collapse
|
3
|
Barbuto Ferraiuolo S, Cammarota M, Schiraldi C, Restaino OF. Streptomycetes as platform for biotechnological production processes of drugs. Appl Microbiol Biotechnol 2021; 105:551-568. [PMID: 33394149 PMCID: PMC7780072 DOI: 10.1007/s00253-020-11064-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Streptomyces is one of the most versatile genera for biotechnological applications, widely employed as platform in the production of drugs. Although streptomycetes have a complex life cycle and metabolism that would need multidisciplinary approaches, review papers have generally reported only studies on single aspects like the isolation of new strains and metabolites, morphology investigations, and genetic or metabolic studies. Besides, even if streptomycetes are extensively used in industry, very few review papers have focused their attention on the technical aspects of biotechnological processes of drug production and bioconversion and on the key parameters that have to be set up. This mini-review extensively illustrates the most innovative developments and progresses in biotechnological production and bioconversion processes of antibiotics, immunosuppressant, anticancer, steroidal drugs, and anthelmintic agents by streptomycetes, focusing on the process development aspects, describing the different approaches and technologies used in order to improve the production yields. The influence of nutrients and oxygen on streptomycetes metabolism, new fed-batch fermentation strategies, innovative precursor supplementation approaches, and specific bioreactor design as well as biotechnological strategies coupled with metabolic engineering and genetic tools for strain improvement is described. The use of whole, free, and immobilized cells on unusual supports was also reported for bioconversion processes of drugs. The most outstanding thirty investigations published in the last 8 years are here reported while future trends and perspectives of biotechnological research in the field have been illustrated. KEY POINTS: • Updated Streptomyces biotechnological processes for drug production are reported. • Innovative approaches for Streptomyces-based biotransformation of drugs are reviewed. • News about fermentation and genome systems to enhance secondary metabolite production.
Collapse
Affiliation(s)
- Simona Barbuto Ferraiuolo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
4
|
Fan K, Lin B, Tao Y, Yang K. Engineering deacetoxycephalosporin C synthase as a catalyst for the bioconversion of penicillins. J Ind Microbiol Biotechnol 2016; 44:705-710. [PMID: 27826726 DOI: 10.1007/s10295-016-1857-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/30/2016] [Indexed: 11/27/2022]
Abstract
7-aminodeacetoxycephalosporanic acid (7-ADCA) is a key intermediate of many clinically useful semisynthetic cephalosporins that were traditionally prepared by processes involving chemical ring expansion of penicillin G. Bioconversion of penicillins to cephalosporins using deacetoxycephalosporin C synthase (DAOCS) is an alternative and environmentally friendly process for 7-ADCA production. Arnold Demain and co-workers pioneered such a process. Later, protein engineering efforts to improve the substrate specificity and catalytic efficiency of DAOCS for penicillins have been made by many groups, and a whole cell process using Escherichia coli for bioconversion of penicillins has been developed.
Collapse
Affiliation(s)
- Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing, 100101, People's Republic of China
| | - Baixue Lin
- ASCR Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yong Tao
- ASCR Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing, 100101, People's Republic of China.
| |
Collapse
|
5
|
Modified Deacetylcephalosporin C Synthase for the Biotransformation of Semisynthetic Cephalosporins. Appl Environ Microbiol 2016; 82:3711-3720. [PMID: 27084018 DOI: 10.1128/aem.00174-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deacetylcephalosporin C synthase (DACS), a 2-oxoglutarate-dependent oxygenase synthesized by Streptomyces clavuligerus, transforms an inert methyl group of deacetoxycephalosporin C (DAOC) into an active hydroxyl group of deacetylcephalosporin C (DAC) during the biosynthesis of cephalosporin. It is a step which is chemically difficult to accomplish, but its development by use of an enzymatic method with DACS can facilitate a cost-effective technology for the manufacture of semisynthetic cephalosporin intermediates such as 7-amino-cephalosporanic acid (7ACA) and hydroxymethyl-7-amino-cephalosporanic acid (HACA) from cephalosporin G. As the native enzyme showed negligible activity toward cephalosporin G, an unnatural and less expensive substrate analogue, directed-evolution strategies such as random, semirational, rational, and computational methods were used for systematic engineering of DACS for improved activity. In comparison to the native enzyme, several variants with improved catalytic efficiency were found. The enzyme was stable for several days and is expressed in soluble form at high levels with significantly higher kcat/Km values. The efficacy and industrial scalability of one of the selected variants, CefFGOS, were demonstrated in a process showing complete bioconversion of 18 g/liter of cephalosporin G into deacetylcephalosporin G (DAG) in about 80 min and showed reproducible results at higher substrate concentrations as well. DAG could be converted completely into HACA in about 30 min by a subsequent reaction, thus facilitating scalability toward commercialization. The experimental findings with several mutants were also used to rationalize the functional conformation deduced from homology modeling, and this led to the disclosure of critical regions involved in the catalysis of DACS. IMPORTANCE 7ACA and HACA serve as core intermediates for the manufacture of several semisynthetic cephalosporins. As they are expensive, a cost-effective enzyme technology for the manufacture of these intermediates is required. Deacetylcephalosporin C synthase (DACS) was identified as a candidate enzyme for the development of technology from cephalosporin G in this study. Directed-evolution strategies were employed to enhance the catalytic efficiency of deacetylcephalosporin C synthase. One of the selected mutants of deacetylcephalosporin C synthase could convert high concentrations of cephalosporin G into DAG, which subsequently could be converted into HACA completely. As cephalosporin G is inexpensive and readily available, the technology would lead to a substantial reduction in the cost for these intermediates upon commercialization.
Collapse
|
6
|
Andersson I, Valegård K. 2-Oxoglutarate-Dependent Oxygenases of Cephalosporin Synthesis. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Central steps in the biosynthetic pathways of some of the most commonly used antibiotics, the cephalosporins, are catalysed by 2-oxoglutarate (2OG)-dependent oxygenases. Deacetoxycephalosporin C synthase (DAOCS) catalyses the 2OG-dependent oxidative expansion of the five-membered thiazolidine ring of the penicillin nucleus into the six-membered dihydrothiazine ring of the cephalosporin nucleus. DAOCS uses dioxygen to create a reactive iron–oxygen intermediate from ferrous ion to drive the reaction. In prokaryotic cephalosporin producers, the cephalosporin product, DAOC, is hydroxylated at the 3′-position to form deacetylcephalosporin C (DAC) as catalysed by a second 2OG-dependent enzyme, DAC synthase (DACS). In eukaryotic cephalosporin producers, the reaction is catalysed by a bifunctional enzyme, DAOC/DACS, that catalyses both the ring expansion and the 3′-hydroxylation reactions. The prokaryotic and eukaryotic enzymes are closely related to DAOCS by sequence, suggesting these enzymes may have evolved by gene duplication. Cephamycin C-producing microorganisms use two enzymes, encoded by the genes cmcI/J, to convert cephalosporins to their 7α-methoxy derivatives that are less vulnerable to β-lactam hydrolysing enzymes. The methoxylation reaction is dependent on Fe(ii), 2OG and S-adenosylmethionine, suggesting the involvement of another 2OG-dependent oxygenase. Herein, structural and mechanistic features are summarized for these 2OG enzymes that utilize this common and flexible mode of dioxygen activation.
Collapse
Affiliation(s)
- Inger Andersson
- Department of Cell and Molecular Biology, Uppsala University Box 596, S-751 24 Uppsala Sweden
| | - Karin Valegård
- Department of Cell and Molecular Biology, Uppsala University Box 596, S-751 24 Uppsala Sweden
| |
Collapse
|
7
|
Tarhonskaya H, Szöllössi A, Leung IKH, Bush JT, Henry L, Chowdhury R, Iqbal A, Claridge TDW, Schofield CJ, Flashman E. Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry 2014; 53:2483-93. [DOI: 10.1021/bi500086p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hanna Tarhonskaya
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrea Szöllössi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Ivanhoe K. H. Leung
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Jacob T. Bush
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Luc Henry
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Aman Iqbal
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
8
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
9
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Ji J, Tian X, Fan K, Yang K. New strategy of site-directed mutagenesis identifies new sites to improve Streptomyces clavuligerus deacetoxycephalosporin C synthase activity toward penicillin G. Appl Microbiol Biotechnol 2011; 93:2395-401. [DOI: 10.1007/s00253-011-3566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/10/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
11
|
Directed evolution and rational approaches to improving Streptomyces clavuligerus deacetoxycephalosporin C synthase for cephalosporin production. J Ind Microbiol Biotechnol 2009; 36:619-33. [DOI: 10.1007/s10295-009-0549-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
|
12
|
Sim Goo K, Song Chua C, Sim TS. A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring-expansion activity. Proteins 2008; 70:739-47. [PMID: 17729280 DOI: 10.1002/prot.21549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a previous study, the conserved arginine residue at position 306 of Streptomyces clavuligerus deacetoxycephalsoporin C synthase (scDAOCS), when mutated to leucine, resulted in 191% increase in converting ampicillin to its expanded cephalosporin moiety compared with that of the wild-type enzyme. However, the role of this residue in eliciting the improved enzymatic activity is not well understood. In this study, probing the molecular basis of amino acid substitutions at position 306 has underscored its importance for engineering various improvements in the ring expansion activity. Structural modeling using SwissPdbViewer revealed that R306 is surrounded by a hydrophobic cleft formed by residues Y184, L186, W297, I298, and V303. Hence, the improved activity achieved by the R306L mutation was probably because of better hydrophobic packing in this region. To evaluate the role of amino acids at position 306 of scDAOCS and its influence on the molecular status of the enzyme at this locality, alteration to 18 other amino acids was done by site-directed mutagenesis. The effects of each substitution on the enzyme activity were determined by bioassay using penicillin substrates: ampicillin, penicillin G, phenethicillin, and carbenicillin. Results obtained showed a drastic reduction in enzyme activity when R306 was replaced with charged or polar residues, thus emphasizing the importance of hydrophobic packing around this site. The bioassay results also illustrated that apart from leucine, substitutions to nonpolar residues, isoleucine and methionine, were able to improve the ampicillin conversion activity of scDAOCS by 168 and 113% of the wild-type enzyme activity, respectively. Similar trend of effects from each mutation was also observed for penicillin G, phenethicillin, and carbenicillin conversions. The enhanced enzyme activities were supported by spectrophotometric assay indicating that all these mutants have lower K(m) values (R306L: 1.09 mM; R306I: 2.64 mM; R306M: 5.68 mM) than the wild-type enzyme (8.33 mM), resulting in improvement in the enzyme's substrate binding affinity. Hence, this mutational study of amino acids situated at 306 of scDAOCS has provided a better understanding of the significance of specific amino acid residues at this position which can improve its ring-expansion activity when given a plethora of beta-lactam substrates to generate corresponding, possibly new, cephalosporins.
Collapse
Affiliation(s)
- Kian Sim Goo
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597
| | | | | |
Collapse
|
13
|
Relevant double mutations in bioengineered Streptomyces clavuligerus deacetoxycephalosporin C synthase result in higher binding specificities which improve penicillin bioconversion. Appl Environ Microbiol 2007; 74:1167-75. [PMID: 18083859 DOI: 10.1128/aem.02230-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces clavuligerus deacetoxycephalosporin C synthase (ScDAOCS) is an important industrial enzyme for the production of 7-aminodeacetoxycephalosporanic acid, which is a precursor for cephalosporin synthesis. Single mutations of six amino acid residues, V275, C281, N304, I305, R306, and R307, were previously shown to result in enhanced levels of ampicillin conversion, with activities ranging from 129 to 346% of the wild-type activity. In this study, these mutations were paired to investigate their effects on enzyme catalysis. The bioassay results showed that the C-terminal mutations (N304X [where X is alanine, leucine, methionine, lysine, or arginine], I305M, R306L, and R307L) in combination with C281Y substantially increased the conversion of ampicillin; the activity was up to 491% of the wild-type activity. Similar improvements were observed for converting carbenicillin (up to 1,347% of the wild-type activity) and phenethicillin (up to 1,109% of the wild-type activity). Interestingly, the N304X R306L double mutants exhibited lower activities for penicillin G conversion, and activities that were 40 to 114% of wild-type enzyme activity were detected. Based on kinetic studies using ampicillin, it was clear that the increases in the activities of the double mutants relative to those of the corresponding single mutants were due to enhanced substrate binding affinities. These results also validated the finding that the N304R and I305M mutations are ideal for increasing the substrate binding affinity and turnover rate of the enzyme, respectively. This study provided further insight into the structure-function interaction of ScDAOCS with different penicillin substrates, thus providing a useful platform for further rational modification of its enzymatic properties.
Collapse
|
14
|
Wei CL, Yang YB, Deng CH, Liu WC, Hsu JS, Lin YC, Liaw SH, Tsai YC. Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion. Appl Environ Microbiol 2006; 71:8873-80. [PMID: 16332884 PMCID: PMC1317366 DOI: 10.1128/aem.71.12.8873-8880.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deacetoxycephalosporin C synthase from Streptomyces clavuligerus was directly modified for enhancement of penicillin G expansion into phenylacetyl-7-aminodeacetoxycephalosporanic acid, an important intermediate in the industrial manufacture of cephalosporin antibiotics. Nine new mutants, mutants M73T, T91A, A106T, C155Y, Y184H, M188V, M188I, H244Q, and L277Q with 1.4- to 5.7-fold increases in the kcat/Km ratio, were obtained by screening 6,364 clones after error-prone PCR-based random mutagenesis. Subsequently, DNA shuffling was carried out to screen possible combinations of substitutions, including previous point mutations. One quaternary mutant, the C155Y/Y184H/V275I/C281Y mutant, which had a kcat/Km ratio that was 41-fold higher was found after 10,572 clones were assayed. The distinct mutants obtained using different mutagenesis methods demonstrated the complementarity of the techniques. Interestingly, most of the mutated residues that result in enhanced activities are located within or near the unique small barrel subdomain, suggesting that manipulation of this subdomain may be a constructive strategy for improvement of penicillin expansion. Several mutations had very distinct effects on expansion of penicillins N and G, perhaps due to different penicillin-interacting modes within the enzyme. Thus, the present study provided not only promising enzymes for cephalosporin biosynthesis but also a large number of mutants, which provided new insights into the structure-function relationship of the protein that should lead to further rational engineering.
Collapse
Affiliation(s)
- Chia-Li Wei
- Institute of Biochemistry, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Pei-Tou, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu XB, Fan KQ, Wang QH, Yang KQ. C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol Lett 2005; 246:103-10. [PMID: 15869968 DOI: 10.1016/j.femsle.2005.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 03/16/2005] [Accepted: 03/26/2005] [Indexed: 10/25/2022] Open
Abstract
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C (DAOC) and the hydroxylation of the latter to deacetylcephalosporin C (DAC). Three residues N305, R307 and R308 located in close proximity to the C-terminus of acDAOC/DACS were each mutated to leucine. The N305L and R308L mutant acDAOC/DACSs showed significant improvement in their ability to convert penicillin analogs. R308 was identified for the first time as a critical residue for DAOC/DACS activity. Kinetic analyses of purified R308L enzyme indicated its improved catalytic efficiency is due to combined improvements of K(m) and k(cat). Comparative modeling of acDAOC/DACS supports the involvement of R308 in the formation of substrate-binding pocket.
Collapse
Affiliation(s)
- Xiao-Bin Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, PR China
| | | | | | | |
Collapse
|
16
|
Hsu JS, Yang YB, Deng CH, Wei CL, Liaw SH, Tsai YC. Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl Environ Microbiol 2004; 70:6257-63. [PMID: 15466573 PMCID: PMC522083 DOI: 10.1128/aem.70.10.6257-6263.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deacetoxycephalosporin C synthase (expandase) from Streptomyces clavuligerus, encoded by cefE, is an important industrial enzyme for the production of 7-aminodeacetoxycephalosporanic acid from penicillin G. To improve the substrate specificity for penicillin G, eight cefE-homologous genes were directly evolved by using the DNA shuffling technique. After the first round of shuffling and screening, using an Escherichia coli ESS bioassay, four chimeras with higher activity were subjected to a second round. Subsequently, 20 clones were found with significantly enhanced activity. The kinetic parameters of two isolates that lack substrate inhibition showed 8.5- and 118-fold increases in the k(cat)/K(m) ratio compared to the S. clavuligerus expandase. The evolved enzyme with the 118-fold increase is the most active obtained to date anywhere. Our shuffling results also indicate the remarkable plasticity of the expandase, suggesting that more-active chimeras might be achievable with further rounds.
Collapse
Affiliation(s)
- Jyh-Shing Hsu
- Institute of Biochemistry, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Pei-Tou, Taipei 11221, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Oster LM, van Scheltinga ACT, Valegård K, Hose AM, Dubus A, Hajdu J, Andersson I. Conformational Flexibility of the C Terminus with Implications for Substrate Binding and Catalysis Revealed in a New Crystal Form of Deacetoxycephalosporin C Synthase. J Mol Biol 2004; 343:157-71. [PMID: 15381427 DOI: 10.1016/j.jmb.2004.07.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 07/12/2004] [Accepted: 07/15/2004] [Indexed: 11/18/2022]
Abstract
Deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus catalyses the oxidative ring expansion of the penicillin nucleus into the nucleus of cephalosporins. The reaction requires dioxygen and 2-oxoglutarate as co-substrates to create a reactive iron-oxygen intermediate from a ferrous iron in the active site. The active enzyme is monomeric in solution. The structure of DAOCS was determined earlier from merohedrally twinned crystals where the last four C-terminal residues (308-311) of one molecule penetrate the active site of a neighbouring molecule, creating a cyclic trimeric structure in the crystal. Shortening the polypeptide chain from the C terminus by more than four residues diminishes activity. Here, we describe a new crystal form of DAOCS in which trimer formation is broken and the C-terminal arm is free. These crystals show no signs of twinning, and were obtained from DAOCS labelled with an N-terminal His-tag. The modified DAOCS is catalytically active. The free C-terminal arm protrudes into the solvent, and the C-terminal domain (residues 268-299) is rotated by about 16 degrees towards the active site. The last 12 residues (300-311) are disordered. Structures for various enzyme-substrate and enzyme-product complexes in the new crystal form confirm overlapping binding sites for penicillin and 2-oxoglutarate. The results support the notion that 2-oxoglutarate and dioxygen need to react first to produce an oxidizing iron species, followed by reaction with the penicillin substrate. The position of the penicillin nucleus is topologically similar in the two crystal forms, but the penicillin side-chain in the new non-twinned crystals overlaps with the position of residues 304-306 of the C-terminal arm in the twinned crystals. An analysis of the interactions between the C-terminal region and residues in the active site indicates that DAOCS could also accept polypeptide chains as ligands, and these could bind near the iron.
Collapse
Affiliation(s)
- Linda M Oster
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-75124 Uppsala
| | | | | | | | | | | | | |
Collapse
|
18
|
Chin HS, Goo KS, Sim TS. A complete library of amino acid alterations at N304 in Streptomyces clavuligerus deacetoxycephalosporin C synthase elucidates the basis for enhanced penicillin analogue conversion. Appl Environ Microbiol 2004; 70:607-9. [PMID: 14711695 PMCID: PMC321265 DOI: 10.1128/aem.70.1.607-609.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N304 of Streptomyces clavuligerus deacetoxycephalosporin C synthase was mutagenized to alter its catalytic ability. Given that N304A, N304K, N304L, and N304R mutant enzymes exhibited significant improvements in penicillin analogue conversions, we advocate that replacement of N304 with residues with aliphatic or basic side chains is preferable for engineering of a hypercatalytic enzyme.
Collapse
Affiliation(s)
- Hong Soon Chin
- Department of Microbiology, Faculty of Medicine, Tropical Marine Science Institute, National University of Singapore, Singapore
| | | | | |
Collapse
|
19
|
Lloyd MD, Lipscomb SJ, Hewitson KS, Hensgens CMH, Baldwin JE, Schofield CJ. Controlling the Substrate Selectivity of Deacetoxycephalosporin/deacetylcephalosporin C Synthase. J Biol Chem 2004; 279:15420-6. [PMID: 14734549 DOI: 10.1074/jbc.m313928200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deacetoxycephalosporin/deacetylcephalosporin C synthase (DAOC/DACS) is an iron(II) and 2-oxoglutarate-dependent oxygenase involved in the biosynthesis of cephalosporin C in Cephalosporium acremonium. It catalyzes two oxidative reactions, oxidative ring-expansion of penicillin N to deacetoxycephalosporin C, and hydroxylation of the latter to give deacetylcephalosporin C. The enzyme is closely related to deacetoxycephalosporin C synthase (DAOCS) and DACS from Streptomyces clavuligerus, which selectively catalyze ring-expansion or hydroxylation reactions, respectively. In this study, structural models based on DAOCS coupled with site-directed mutagenesis were used to identify residues within DAOC/DACS that are responsible for controlling substrate and reaction selectivity. The M306I mutation abolished hydroxylation of deacetylcephalosporin C, whereas the W82A mutant reduced ring-expansion of penicillin G (an "unnatural" substrate). Truncation of the C terminus of DAOC/DACS to residue 310 (Delta310 mutant) enhanced ring-expansion of penicillin G by approximately 2-fold. A double mutant, Delta310/M306I, selectively catalyzed the ring-expansion reaction and had similar kinetic parameters to the wild-type DAOC/DACS. The Delta310/N305L/M306I triple mutant selectively catalyzed ring-expansion of penicillin G and had improved kinetic parameters (K(m) = 2.00 +/- 0.47 compared with 6.02 +/- 0.97 mm for the wild-type enzyme). This work demonstrates that a single amino acid residue side chain within the DAOC/DACS active site can control whether the enzyme catalyzes ring-expansion, hydroxylation, or both reactions. The catalytic efficiency of mutant enzymes can be improved by combining active site mutations with other modifications including C-terminal truncation and modification of Asn-305.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
20
|
Wei CL, Yang YB, Wang WC, Liu WC, Hsu JS, Tsai YC. Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G. Appl Environ Microbiol 2003; 69:2306-12. [PMID: 12676714 PMCID: PMC154807 DOI: 10.1128/aem.69.4.2306-2312.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the k(cat)/K(m) ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased k(cat)/K(m) values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the k(cat)/K(m) ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.
Collapse
Affiliation(s)
- Chia-Li Wei
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Chin HS, Sim J, Seah KI, Sim TS. Deacetoxycephalosporin C synthase isozymes exhibit diverse catalytic activity and substrate specificity. FEMS Microbiol Lett 2003; 218:251-7. [PMID: 12586400 DOI: 10.1111/j.1574-6968.2003.tb11525.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The biosynthesis of cephalosporins involving a thiozolidine ring expansion is catalyzed by deacetoxycephalosporin C synthase (DAOCS). In this study, three DAOCS isozymes were cloned and expressed as active enzymes together with Streptomyces jumonjinensis DAOCS that was newly isolated and partially characterized. The enzymes showed excellent substrate conversion for penicillin G, phenethicillin, ampicillin and carbenicillin, but they were less effective in the ring expansion of penicillin V, amoxicillin and metampicillin. Streptomyces clavuligerus DAOCS was the most active among the recombinant enzymes. The results also showed that truncation of 20 amino acids at the C-terminus of the Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase polypeptide did not affect penicillin ring expansion.
Collapse
Affiliation(s)
- Hong Soon Chin
- Department of Microbiology, Faculty of Medicine, National University of Singapore, 5 Science Drive 2, 117597, Singapore, Singapore
| | | | | | | |
Collapse
|
22
|
Construction of hybrid bacterial deacetoxycephalosporin C synthases (expandases) by in vivo homeologous recombination. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00179-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Chin HS, Sim TS. C-terminus modification of Streptomyces clavuligerus deacetoxycephalosporin C synthase improves catalysis with an expanded substrate specificity. Biochem Biophys Res Commun 2002; 295:55-61. [PMID: 12083766 DOI: 10.1016/s0006-291x(02)00629-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The biosynthesis of cephalosporins is catalyzed by deacetoxycephalosporin C synthase (DAOCS). Based on computational, biochemical, and structural analyses, it has been proposed that modification of the C-terminus of DAOCS might be a constructive strategy for engineering improvement in enzyme activity. Therefore, five hydrophilic residues namely N301, Y302, N304, R306, and R307 located in proximity to the C-terminus of Streptomyces clavuligerus DAOCS (scDAOCS) were selected and each substituted with a hydrophobic leucine residue. Substitutions at positions 304, 306, and 307 created mutant scDAOCSs with improved efficiencies in penicillin analog conversion up to 397%. And since it has been previously advocated that the C-terminus is crucial for guiding substrate entry, a truncated mutant DAOCS was constructed to assess its involvement. The truncation of the C-terminus at position 310 in the wild-type scDAOCS resulted in reduction of indiscriminate conversion of penicillin analog but this defect was compensated by the replacement of asparagine with leucine at position 304.
Collapse
Affiliation(s)
- H S Chin
- Department of Microbiology, Faculty of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | | |
Collapse
|
24
|
Adrio JL, Demain AL. Improvements in the Formation of Cephalosporins from Penicillin G and Other Penicillins by Bioconversion. Org Process Res Dev 2002. [DOI: 10.1021/op020010f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José L. Adrio
- Department of Biotechnology, Puleva Biotech, S.A., Camino de Purchil, 66, 18004-Granada, Spain, and Charles A. Dana Research Institute (R.I.S.E.), HS-330, Drew University, Madison, New Jersey 07940, U.S.A
| | - Arnold L. Demain
- Department of Biotechnology, Puleva Biotech, S.A., Camino de Purchil, 66, 18004-Granada, Spain, and Charles A. Dana Research Institute (R.I.S.E.), HS-330, Drew University, Madison, New Jersey 07940, U.S.A
| |
Collapse
|
25
|
Lee HJ, Schofield CJ, Lloyd MD. Active site mutations of recombinant deacetoxycephalosporin C synthase. Biochem Biophys Res Commun 2002; 292:66-70. [PMID: 11890672 DOI: 10.1006/bbrc.2002.6620] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Site-directed mutagenesis of active site residues of deacetoxycephalosporin C synthase active site residues was carried out to investigate their role in catalysis. The following mutations were made and their effects on the conversion of 2-oxoglutarate and the oxidation of penicillin N or G were assessed: M180F, G299N, G300N, Y302S, Y302F/G300A, Y302E, Y302H, and N304A. The Y302S, Y302E, and Y302H mutations reduced 2-oxoglutarate conversions and abolished (<2%) penicillin G oxidation. The Y302F/G300A mutation caused partial uncoupling of penicillin G oxidation from 2-oxoglutarate conversion, but did not uncouple penicillin N oxidation from 2-oxoglutarate conversion. Met-180 is involved in binding 2-oxoglutarate, and the M180F mutation caused uncoupling of 2-oxoglutarate from penicillin oxidation. The N304A mutation apparently enhanced in vitro conversion of penicillin N but had little effect on the oxidation of penicillin G, under standard assay conditions.
Collapse
Affiliation(s)
- Hwei-Jen Lee
- Oxford Centre for Molecular Sciences and Dyson Perrins Laboratory, South Parks Road, Oxford, OX1 3QY, UK.
| | | | | |
Collapse
|