1
|
Lin L, Huang H, Zhang X, Dong L, Chen Y. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155559. [PMID: 35483467 DOI: 10.1016/j.scitotenv.2022.155559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen oxidizing bacteria (HOB), a type of chemoautotroph, are a group of bacteria from different genera that share the ability to oxidize H2 and fix CO2 to provide energy and synthesize cellular material. Recently, HOB have received growing attention due to their potential for CO2 capture and waste recovery. This review provides a comprehensive overview of the biological characteristics of HOB and their application in resource recovery and pollutant removal. Firstly, the enzymes, genes and corresponding regulation systems responsible for the key metabolic processes of HOB are discussed in detail. Then, the enrichment and cultivation methods including the coupled water splitting-biosynthetic system cultivation, mixed cultivation and two-stage cultivation strategies for HOB are summarized, which is the critical prerequisite for their application. On the basis, recent advances of HOB application in the recovery of high-value products and the removal of pollutants are presented. Finally, the key points for future investigation are proposed that more attention should be paid to the main limitations in the large-scale industrial application of HOB, including the mass transfer rate of the gases, the safety of the production processes and products, and the commercial value of the products.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ. Sci Rep 2015; 5:16243. [PMID: 26538283 PMCID: PMC4633670 DOI: 10.1038/srep16243] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. We show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.
Collapse
|
3
|
Mitsui R, Katayama H, Tanaka M. Requirement of carbon dioxide for initial growth of facultative methylotroph, Acidomonas methanolica MB58. J Biosci Bioeng 2014; 120:31-5. [PMID: 25511787 DOI: 10.1016/j.jbiosc.2014.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
Abstract
The facultative methylotrophic bacterium Acidomonas methanolica MB58 can utilize C1 compounds via the ribulose monophosphate pathway. A large gene cluster comprising three components related to C1 metabolism was found in the genome. From upstream, the first was an mxa cluster encoding proteins for oxidation of methanol to formaldehyde; the second was the rmp cluster encoding enzymes for formaldehyde fixation; and the third was the cbb gene cluster encoding proteins for carbon dioxide (CO2) fixation. Examination of CO2 requirements for growth of A. methanolica MB58 cells demonstrated that it did not grow on any carbon source under CO2-free conditions. Measurement of ribulose-1,5-bisphosphate carboxylase activity and RT-PCR analysis demonstrated enzymatic activity was detected in A. methanolica MB58 at growth phase, regardless of carbon sources. However, methanol dehydrogenase and 3-hexlose-6-phosphate synthase expression was regulated by methanol or formaldehyde; it were detected during growth and apparently differed from ribulose-1,5-bisphosphate carboxylase expression. These results suggested that A. methanolica MB58 may be initially dependent on autotrophic growth and that carbon assimilation was subsequently coupled with the ribulose monophosphate pathway at early- to mid-log phases during methylotrophic growth.
Collapse
Affiliation(s)
- Ryoji Mitsui
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| | - Hiroko Katayama
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| | - Mitsuo Tanaka
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
4
|
Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1525-41. [PMID: 18245799 DOI: 10.1093/jxb/erm297] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rubisco is the predominant enzymatic mechanism in the biosphere by which autotrophic bacteria, algae, and terrestrial plants fix CO(2) into organic biomass via the Calvin-Benson-Basham reductive pentose phosphate pathway. Rubisco is not a perfect catalyst, suffering from low turnover rates, a low affinity for its CO(2) substrate, and a competitive inhibition by O(2) as an alternative substrate. As a consequence of changing environmental conditions over the past 3.5 billion years, with decreasing CO(2) and increasing O(2) in the atmosphere, Rubisco has evolved into multiple enzymatic forms with a range of kinetic properties, as well as co-evolving with CO(2)-concentrating mechanisms to cope with the different environmental contexts in which it must operate. The most dramatic evidence of this is the occurrence of multiple forms of Rubisco within autotrophic proteobacteria, where Forms II, IC, IBc, IAc, and IAq can be found either singly or in multiple combinations within a particular bacterial genome. Over the past few years there has been increasing availability of genomic sequence data for bacteria and this has allowed us to gain more extensive insights into the functional significance of this diversification. This paper is focused on summarizing what is known about the diversity of Rubisco forms, their kinetic properties, development of bacterial CO(2)-concentrating mechanisms, and correlations with metabolic flexibility and inorganic carbon environments in which proteobacteria perform various types of obligate and facultative chemo- and photoautotrophic CO(2) fixation.
Collapse
Affiliation(s)
- Murray Ronald Badger
- Molecular Plant Physiology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
5
|
Emlyn-Jones D, Woodger FJ, Price GD, Whitney SM. RbcX can function as a rubisco chaperonin, but is non-essential in Synechococcus PCC7942. PLANT & CELL PHYSIOLOGY 2006; 47:1630-40. [PMID: 17071623 DOI: 10.1093/pcp/pcl028] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In most cyanobacteria, the gene rbcX is co-transcribed with the rbcL and rbcS genes that code for the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Previous co-expression studies in Escherichia coli of cyanobacterial Rubisco and RbcX have identified a chaperonin-like function for RbcX. The organization of the rbcLXS operon has, to a certain extent, precluded definitive gene function studies of rbcX in cyanobacteria. In Synechococcus PCC7942, however, rbcX is located >100 kb away from the rbcLS operon, providing an opportunity to examine the role of RbcX by insertional inactivation without interference from the Rubisco genes. Fully segregated Synechococcus PCC7942 DeltarbcX::KmR mutants were readily obtained that showed no perturbations in growth rate or Rubisco content and activity. Low amounts of rbcX transcript were detected in Synechococcus PCC7942; however, a sensitive antibody raised against purified RbcX failed to detect RbcX expression in cells exposed to different stress treatments. In contrast, co-expression studies of Rubisco assembly in E. coli showed that RbcX from Synechococcus PCC7942 and PCC7002 are functionally interchangeable and can stimulate assembly of the PCC7942 and PCC7002 Rubisco subunits. Our results indicate that Rubisco folding and assembly in Synechococcus PCC7942 may have evolved to be independent of RbcX function, apparently in contrast to other beta-cyanobacteria. We speculate that divergent evolution of the RbcL sequence may have relaxed a requirement for RbcX function in Synechococcus PCC7942 and propose a new approach for definitively isolating RbcX function in other beta-cyanobacteria.
Collapse
Affiliation(s)
- Daniel Emlyn-Jones
- Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
6
|
Snider J, Houry WA. MoxR AAA+ ATPases: a novel family of molecular chaperones? J Struct Biol 2006; 156:200-9. [PMID: 16677824 DOI: 10.1016/j.jsb.2006.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
The MoxR AAA+ family is a large, diverse group of ATPases that, so far, has been poorly studied. Members of this family are found throughout the Bacteria and Archaea superkingdoms, but have not yet been detected in Eukaryota. The limited experimental data available to date suggest that members of this family might have chaperone-like activities. Here we present an extensive phylogenetic analysis which builds upon our previously published work, and reveals that the MoxR family can be divided into at least seven subfamilies, including MoxR Proper (MRP), TM0930, RavA, CGN, APE2220, PA2707, and YehL. We also include a comprehensive overview and gene context analysis for each of these subfamilies. Our data reveal distinct conserved associations of certain MoxR family members with specific genes, including further support for our previously reported observation that many members of the MoxR AAA+ family are found near Von Willebrand Factor Type A (VWA) proteins and are likely to function with them. We propose, based on bioinformatic analyses and the available literature, that the MoxR AAA+ proteins function with VWA domain-containing proteins to form a chaperone system that is important for the folding/activation of proteins and protein complexes by primarily mediating the insertion of metal cofactors into the substrate molecules.
Collapse
Affiliation(s)
- Jamie Snider
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
7
|
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 2004; 70:4491-8. [PMID: 15294777 PMCID: PMC492426 DOI: 10.1128/aem.70.8.4491-4498.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 04/14/2004] [Indexed: 11/20/2022] Open
Abstract
A set of proteins that changed their levels of synthesis during growth of Acidithiobacillus ferrooxidans ATCC 19859 on metal sulfides, thiosulfate, elemental sulfur, and ferrous iron was characterized by using two-dimensional polyacrylamide gel electrophoresis. N-terminal amino acid sequencing and mass spectrometry analysis of these proteins allowed their identification and the localization of the corresponding genes in the available genomic sequence of A. ferrooxidans ATCC 23270. The genomic context around several of these genes suggests their involvement in the energetic metabolism of A. ferrooxidans. Two groups of proteins could be distinguished. The first consisted of proteins highly upregulated by growth on sulfur compounds (and downregulated by growth on ferrous iron): a 44-kDa outer membrane protein, an exported 21-kDa putative thiosulfate sulfur transferase protein, a 33-kDa putative thiosulfate/sulfate binding protein, a 45-kDa putative capsule polysaccharide export protein, and a putative 16-kDa protein of unknown function. The second group of proteins comprised those downregulated by growth on sulfur (and upregulated by growth on ferrous iron): rusticyanin, a cytochrome c(552), a putative phosphate binding protein (PstS), the small and large subunits of ribulose biphosphate carboxylase, and a 30-kDa putative CbbQ protein, among others. The results suggest in general a separation of the iron and sulfur utilization pathways. Rusticyanin, in addition to being highly expressed on ferrous iron, was also newly synthesized, as determined by metabolic labeling, although at lower levels, during growth on sulfur compounds and iron-free metal sulfides. During growth on metal sulfides containing iron, such as pyrite and chalcopyrite, both proteins upregulated on ferrous iron and those upregulated on sulfur compounds were synthesized, indicating that the two energy-generating pathways are induced simultaneously depending on the kind and concentration of oxidizable substrates available.
Collapse
Affiliation(s)
- Pablo Ramírez
- Laboratorio de Microbiología Molecular y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
8
|
Wei X, Sayavedra-Soto LA, Arp DJ. The transcription of the cbb operon in Nitrosomonas europaea. Microbiology (Reading) 2004; 150:1869-1879. [PMID: 15184573 DOI: 10.1099/mic.0.26785-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrosomonas europaeais an aerobic ammonia-oxidizing bacterium that participates in the C and N cycles.N. europaeautilizes CO2as its predominant carbon source, and is an obligate chemolithotroph, deriving all the reductant required for energy and biosynthesis from the oxidation of ammonia (NH3) to nitrite (). This bacterium fixes carbon via the Calvin–Benson–Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). The RubisCO operon is composed of five genes,cbbLSQON. This gene organization is similar to that of the operon for ‘green-like’ type I RubisCOs in other organisms. ThecbbRgene encoding the putative regulatory protein for RubisCO transcription was identified upstream ofcbbL. This study showed that transcription ofcbbgenes was upregulated when the carbon source was limited, whileamo,haoand other energy-harvesting-related genes were downregulated.N. europaearesponds to carbon limitation by prioritizing resources towards key components for carbon assimilation. Unlike the situation foramogenes, NH3was not required for the transcription of thecbbgenes. All fivecbbgenes were only transcribed when an external energy source was provided. In actively growing cells, mRNAs from the five genes in the RubisCO operon were present at different levels, probably due to premature termination of transcription, rapid mRNA processing and mRNA degradation.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|